
Paper 1 – **Graphormer**, Do Transformers Really Perform Bad for Graph Representation?

Centrality Encoding –

$$h_i^{(0)} = x_i + z_{\deg^-(v_i)}^- + z_{\deg^+(v_i)}^+,$$

Spatial Encoding –

$$A_{ij} = rac{(h_i W_Q)(h_j W_K)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)},$$

Edge Encoding –

$$A_{ij} = \frac{(h_i W_Q)(h_j W_K)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)} + c_{ij}, \text{ where } c_{ij} = \frac{1}{N} \sum_{n=1}^{N} x_{e_n} (w_n^E)^T,$$

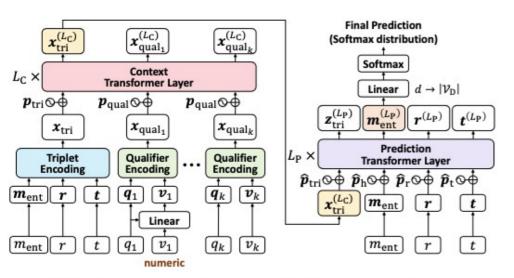
More expressive power than GIN! Can distinguish graphs where 1-WL test fails.

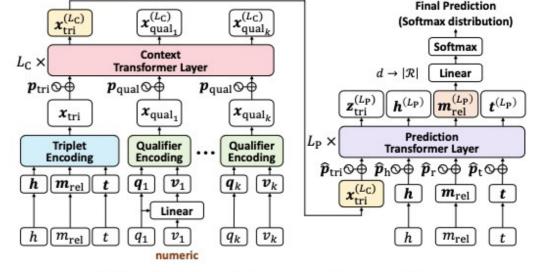
Very Innovative; addition of a special node [VNode] in analogy with [CLS] token in BERT.

- There is an edge between [VNode] and each node.
- Each step updates [VNode] like a normal node.
- Finally, [VNode] is used as a representation of the Graph!
- "While the [VNode] is connected to all other nodes in graph, which means the distance of the shortest path is 1 for any $\varphi([VNode], vj)$ and $\varphi(vi, [VNode])$, the connection is not physical. To distinguish the connection of physical and virtual, we reset all spatial encodings for $b\varphi([VNode], vj)$ and $b\varphi(vi, [VNode])$ to a distinct learnable scalar".
- "Conceptually, the benefit of the virtual node is that it can aggregate the information of the whole graph (like the READOUT function) and then propagate it to each node".
- Took special care to avoid over-smoothing.

Paper 2 – **HyNT**, Representation Learning on Hyper-Relational and Numeric Knowledge Graphs with Transformers

 $m{x}_{ ext{qual}_1}^{(L_{ ext{C}})}$


Context


Transformer Layer

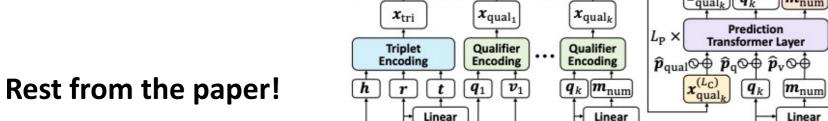
 $p_{\text{qual}} \odot \oplus$

 q_1

 v_1

(a) Predicting a discrete head entity in a primary triplet.

(b) Predicting a relation in a primary triplet.


Final Prediction

(Real value)

Linear

 $m_{\rm num}$

numeric

 $x_{\mathrm{tri}}^{(L_{\mathrm{C}})}$

 $L_{\rm C} \times$

 $p_{\text{tri}} \odot \oplus$

(c) Predicting a numeric value in a qualifier.

 m_{num}

numeric

qualk

 $p_{\text{qual}} \odot \oplus$