Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing

Shengchao Liu^{1,2}, Weili Nie³, Chengpeng Wang⁴, Jiarui Lu^{1,2}, Zhuoran Qiao⁵, Ling Liu⁶, Jian Tang^{*1,7}, Chaowei Xiao^{*3,8}, and Anima Anandkumar^{*3,5}

1. Introduction –

- Existing methods
 - 1. Focus on 2D/3D geometries, OR
 - 2. Involve expensive supervision, OR
 - 3. Avoid multi-modality in pre-training, OR
 - 4. Involve limited multi-modality using SMILES.
- Motivation, Text helps a lot!

2. Brief results -

- Developed a multi-modal foundation model.
- Model has strong zero-shot generalization capabilities to unseen tasks!
- Also create a dataset, PubChemSTM.
- SOTA performance.

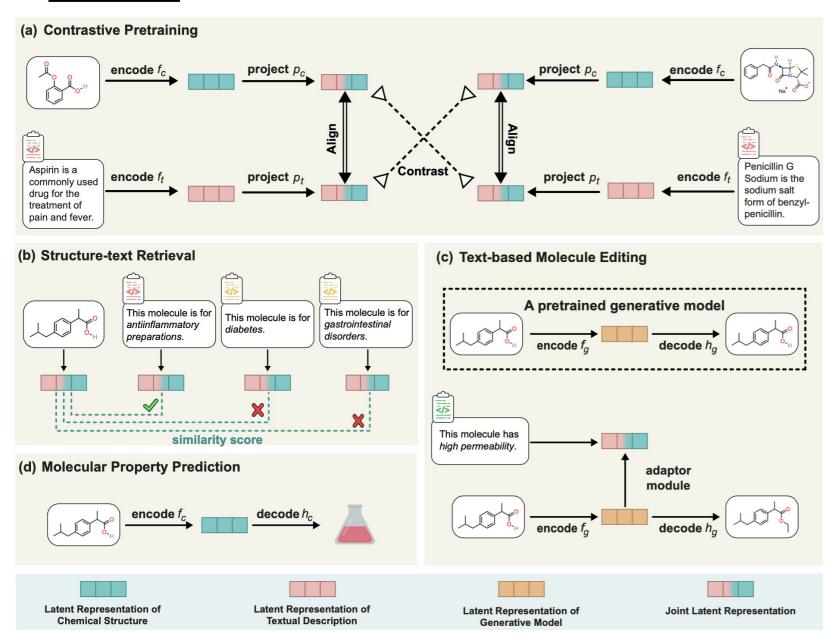


Table 4. Model specifications. # parameters in each model.

Branch	Model	# parameters
Chemical structure	MegaMolBART GIN	10,010,635 1,885,206
Textual description	SciBERT	109,918,464

Graph and Geometric Learning Lab, week 3

Loss functions –

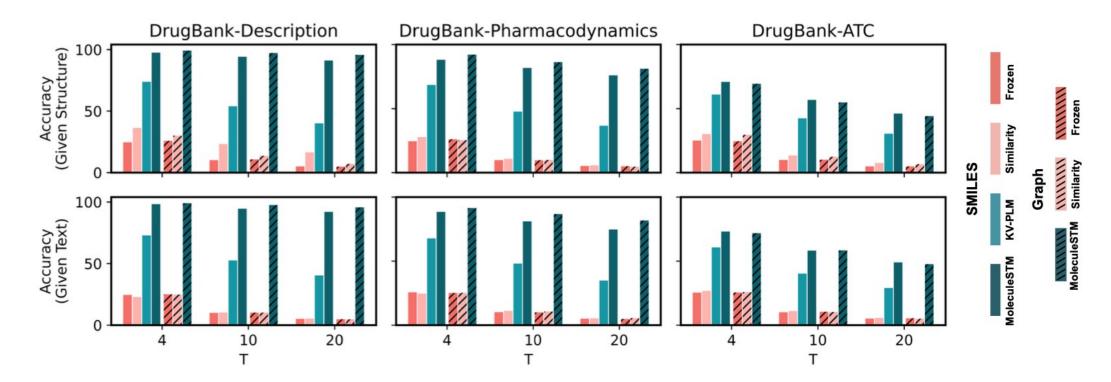
$$\mathcal{L} = -\frac{1}{2} \left(\mathbb{E}_{\boldsymbol{x}_{c}, \boldsymbol{x}_{t}} \left[\log \sigma(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t})) \right] + \mathbb{E}_{\boldsymbol{x}_{c}, \boldsymbol{x}_{t}'} \left[\log(1 - \sigma(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t}'))) \right] - \frac{1}{2} \left(\mathbb{E}_{\boldsymbol{x}_{c}, \boldsymbol{x}_{t}} \left[\log \sigma(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t})) + \mathbb{E}_{\boldsymbol{x}_{c}', \boldsymbol{x}_{t}} \left[\log(1 - \sigma(E(\boldsymbol{x}_{c}', \boldsymbol{x}_{t}))) \right] \right) \right]$$

$$\mathcal{L} = -\frac{1}{2} \mathbb{E} \left[\log \frac{\exp(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t}))}{\exp(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t})) + \sum_{\boldsymbol{x}_{t'}} \exp(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t'}))} + \log \frac{\exp(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t}))}{\exp(E(\boldsymbol{x}_{c}, \boldsymbol{x}_{t})) + \sum_{\boldsymbol{x}_{c'}} \exp(E(\boldsymbol{x}_{c}', \boldsymbol{x}_{t}))} \right]$$

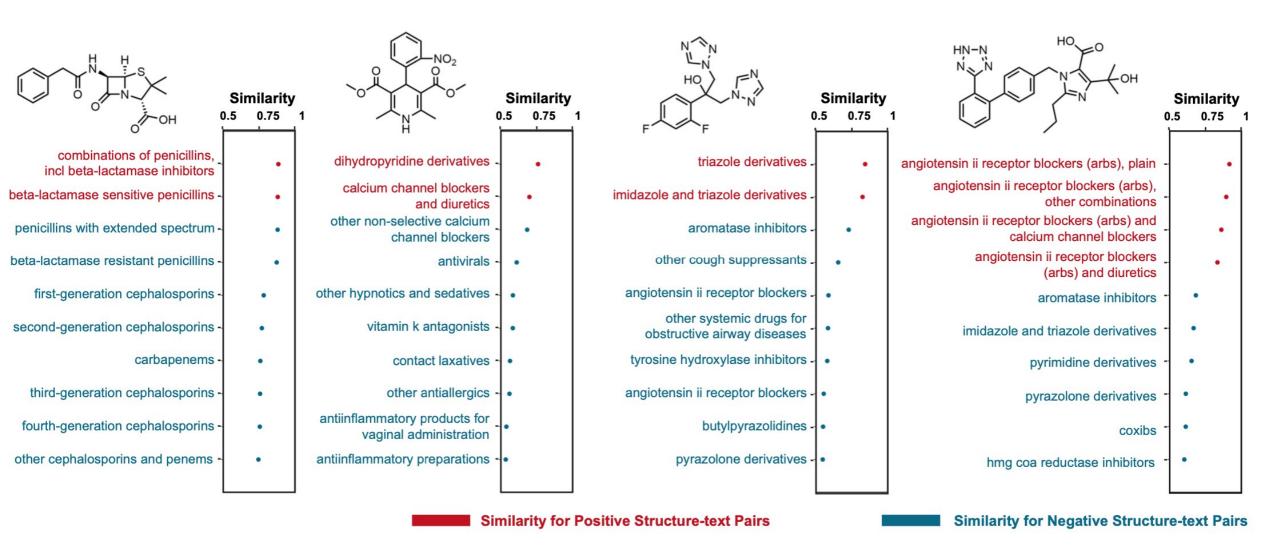
4. <u>Tasks</u> –

- Zero-shot structure-text retrieval,
- Zero-shot text-based molecule editing,
- Molecular property prediction.

- 2 Objectives for tasks
 - 1. Open vocabulary,
 - 2. Compositionality.
- Zero-shot structure text retrieval.



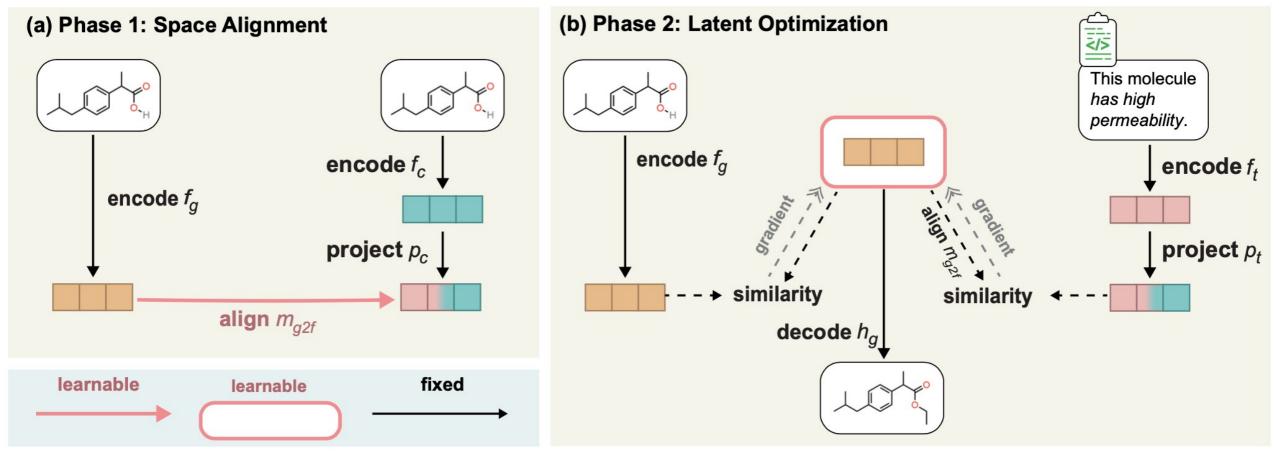
Zero-shot structure text retrieval. (Case Study)

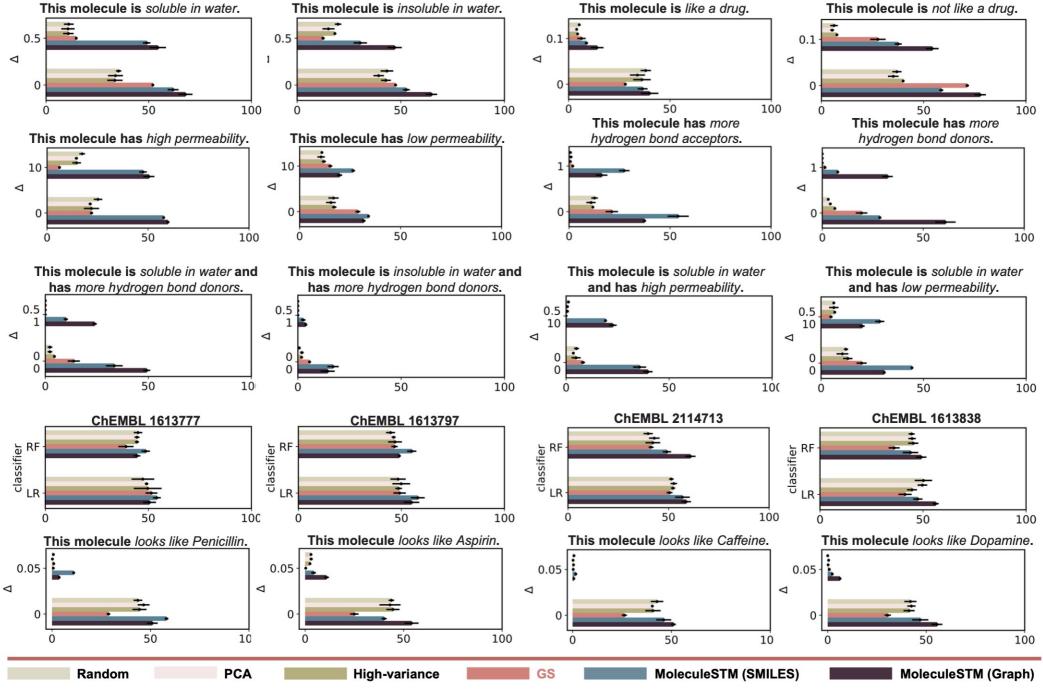


Graph and Geometric Learning Lab, week 3

Zero-shot Text based Molecule editing.

$$w = \underset{w \in \mathcal{W}}{\operatorname{arg\,min}} \left(\mathscr{L}_{\operatorname{cosine-sim}} \left(m_{g2f}(w), p_t \circ f_t(\boldsymbol{x}_t) \right) + \lambda \cdot \mathscr{L}_{l_2} \left(w, f_g(\boldsymbol{x}_{c, \operatorname{in}}) \right) \right)$$





Graph and Geometric Learning Lab, week 3

Zero-shot Text based Molecule editing. (Case Study)

$$\operatorname{hit}(\boldsymbol{x}_{c,\text{in}},\boldsymbol{x}_t) = \begin{cases} 1, & \exists \lambda \text{, s.t. } \boldsymbol{x}_{c,\text{out}} = h_g(\mathbf{w}; \lambda) \land \operatorname{satisfy}(\boldsymbol{x}_{c,\text{in}},\boldsymbol{x}_{c,\text{out}},\boldsymbol{x}_t) \\ 0, & \operatorname{otherwise} \end{cases} \quad \operatorname{hit}(t) = \frac{\sum_{i=1}^{N} \operatorname{hit}(\boldsymbol{x}_{c,\text{in}}^i,\boldsymbol{x}_t)}{N}$$

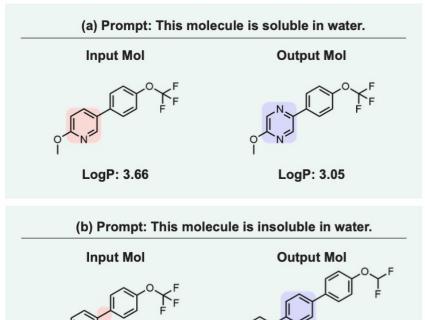
(c) Prompt: This molecule has high permeability.

Output Mol

tPSA: 116

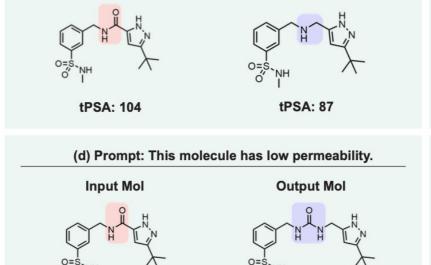
Input Mol

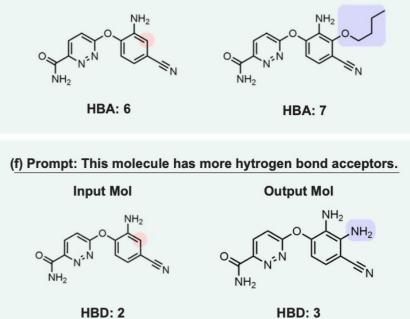
tPSA: 104



LogP: 5.03

LogP: 3.66



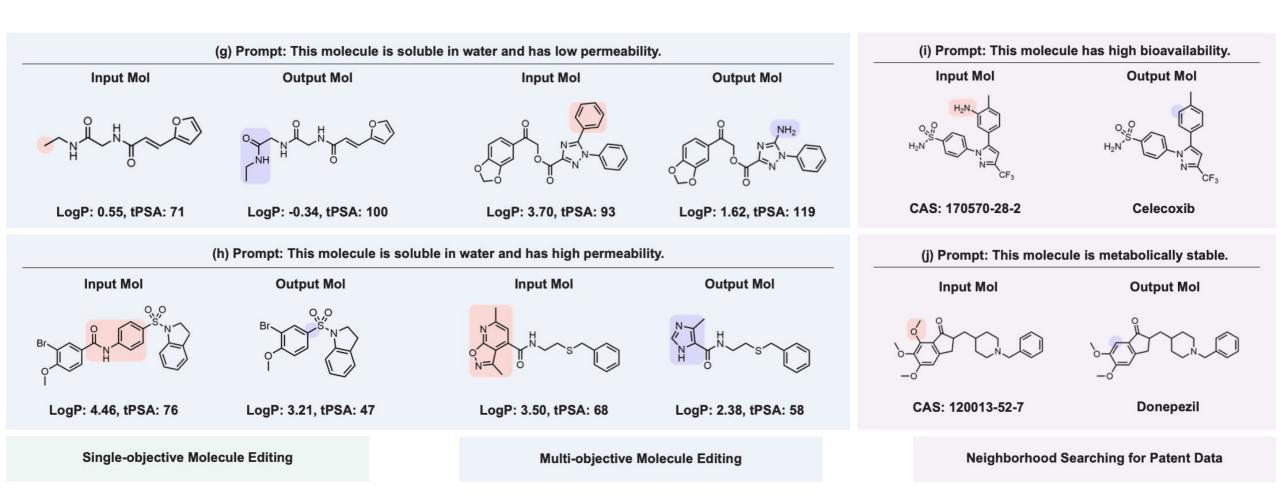


(e) Prompt: This molecule has more hytrogen bond acceptors.

Output Mol

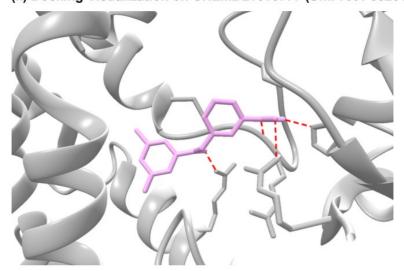
Input Mol

Zero-shot Text based Molecule editing. (Case Study)

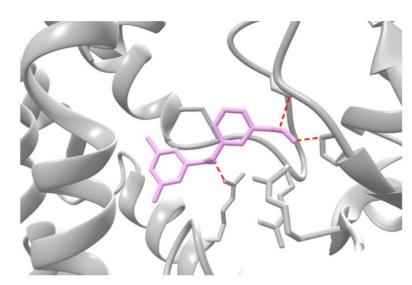


Zero-shot Text based Molecule editing. (Case Study)

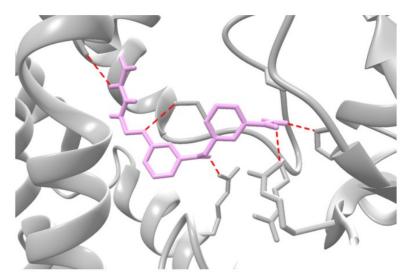
(k) Docking Visualization on CHEMBL1613777 (UniProt P33261)



Input Molecule (docking score: -9.055)



Output Molecule with GS (docking score: -8.843)



Output Molecule with MoleculeSTM (docking score: -10.35)

Molecule property prediction.

	method	BBBP↑	Tox21 ↑	ToxCast ↑	Sider ↑	ClinTox ↑	MUV ↑	HIV↑	Bace ↑	Avg ↑
SMILES	– MegaMolBART KV-PLM MoleculeSTM	66.54±0.95 68.89±0.17 70.50±0.54 70.75 ± 1.90	71.18±0.67 73.89±0.67 72.12±1.02 75.71 ± 0.89	61.16±1.15 63.32±0.79 55.03±1.65 65.17 ± 0.37	58.31±0.78 59.52±1.79 59.83±0.56 63.70 ± 0.81	88.11±0.70 78.12±4.62 89.17±2.73 86.60±2.28	62.74±1.57 61.51±2.75 54.63±4.81 65.69 ± 1.46	70.32±1.51 71.04±1.70 65.40±1.69 77.02 ± 0.44	80.02±1.66 82.46 ± 0.84 78.50±2.73 81.99±0.41	69.80 69.84 68.15 73.33
Graph	 AttrMask ContextPred InfoGraph MolCLR GraphMVP MoleculeSTM 	63.90 ± 2.25 67.79 ± 2.60 63.13 ± 3.48 64.84 ± 0.55 67.79 ± 0.52 68.11 ± 1.36 69.98 ± 0.52	75.06 ± 0.24 75.00 ± 0.20 74.29 ± 0.23 76.24 ± 0.37 75.55 ± 0.43 77.06 ± 0.35 76.91 ± 0.51	64.64 ± 0.76 63.57 ± 0.81 61.58 ± 0.50 62.68 ± 0.65 64.58 ± 0.07 65.11 ± 0.27 65.05 ± 0.39	56.63 ± 2.26 58.05 ± 1.17 60.26 ± 0.77 59.15 ± 0.63 58.66 ± 0.12 60.64 ± 0.13 60.96 ± 1.05	79.86±7.23 75.44±8.75 80.34±3.79 76.51±7.83 84.22±1.47 84.46±3.10 92.53 ± 1.07	70.43 ± 1.83 73.76 ± 1.22 71.36 ± 1.44 72.97 ± 3.61 72.76 ± 0.73 74.38\pm2.00 73.40 ± 2.90	76.23 ± 0.80 75.44 ± 0.45 70.67 ± 3.56 70.20 ± 2.41 75.88 ± 0.24 77.74 ± 2.51 76.93 ± 1.84	73.14 ± 5.28 80.28 ± 0.04 78.75 ± 0.35 77.64 ± 2.04 71.14 ± 1.21 80.48 ± 2.68 80.77 ± 1.34	69.99 71.17 70.05 70.03 71.32 73.50 74.57

AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning

Yongqi Zhang* zhangyongqi@4paradigm.com 4Paradigm Inc. Beijing, China Zhanke Zhou*
cszkzhou@comp.hkbu.edu.hk
Department of Computer Science,
Hong Kong Baptist University
Hong Kong, China

Quanming Yao[†]
qyaoaa@tsinghua.edu.cn
Department of Electronic
Engineering, Tsinghua University
Beijing, China

Xiaowen Chu xwchu@ust.hk Data Science and Analytics Thrust, HKUST (Guangzhou) Guangzhou, China

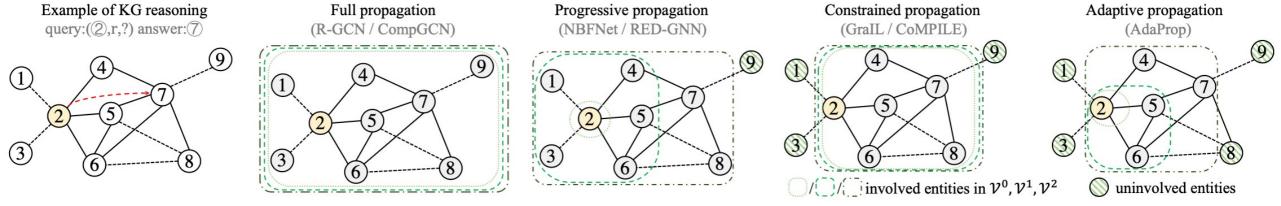
Bo Han
bhanml@comp.hkbu.edu.hk
Department of Computer Science,
Hong Kong Baptist University
Hong Kong, China

1. Introduction –

- "Adaptively sample semantically relevant entities during propagation."
- Reduced computation cost!
- Propose an incremental sampling scheme.
- Past work GNNs, triplet learners, path learners
- GNN based method.
- SOTA performance.

2. Related work -

- GNN for KG reasoning (Full propagation, Progressive propagation, Constrained propagation)
- Sampling in GNNs (node-wise, layer-wise, subgraph-sampling)



- GNN for KG reasoning F(w, hat GL)
- Progressive methods but very heavy!
- So

$$\widehat{\mathcal{G}}_{e_q,r_q}^L = \{ \mathcal{V}_{e_q,r_q}^0, \mathcal{V}_{e_q,r_q}^1, ..., \mathcal{V}_{e_q,r_q}^L \},$$
s.t. $\mathcal{V}_{e_q,r_q}^\ell = \begin{cases} \{e_q\} & \ell = 0 \\ S(\mathcal{V}_{e_q,r_q}^{\ell-1}) & \ell = 1 \dots L \end{cases}.$

- Problems? Heuristics not good enough + might miss out on e_a .
- Current sampling algorithms suffer from these problems.
- Proposed algorithm, incremental sampling
 - Reduce number of entities + preserve connections.
 - 2. Has a relation-dependent sampling.

• Majority of answers lie close to query entity, impose $\mathcal{V}^0_{e_q,r_q}\subseteq\mathcal{V}^1_{e_q,r_q}\dots\subseteq\mathcal{V}^L_{e_q,r_q}$

Table 6: Distance distribution (in %) of queries in Q_{tst} .

distance	1	2	3	4	5	>5
WN18RR	34.9	9.3	21.5	7.5	8.9	17.9
FB15k237	0.0	73.4	25.8	0.2	0.1	0.5
NELL-995	40.9	17.2	36.5	2.5	1.3	1.6
YAGO3-10	56.0	12.9	30.1	0.5	0.1	0.4

Sample as S(.) = SAMP(CAND(.))

$$\overline{\mathcal{V}}_{e_q,r_q}^{\ell} := \operatorname{CAND}(\mathcal{V}_{e_q,r_q}^{\ell-1}) = \mathcal{N}(\mathcal{V}_{e_q,r_q}^{\ell-1}) \setminus \mathcal{V}_{e_q,r_q}^{\ell-1}$$

$$\mathcal{V}_{e_q,r_q}^{\ell} \coloneqq \mathcal{V}_{e_q,r_q}^{\ell-1} \cup \text{SAMP}(\overline{\mathcal{V}}_{e_q,r_q}^{\ell})$$

Now for SAMP(.) –

$$p^{\ell}(e) := \exp\left(g(\boldsymbol{h}_{e}^{\ell}; \boldsymbol{\theta}^{\ell})/\tau\right) / \sum_{e' \in \overline{\mathcal{V}}_{eq,r_q}^{\ell}} \exp\left(g(\boldsymbol{h}_{e'}^{\ell}; \boldsymbol{\theta}^{\ell})/\tau\right)$$

$$G_{e} = g(\boldsymbol{h}_{e}^{\ell}; \boldsymbol{\theta}^{\ell}) - \log(-\log U_{e})$$

Then optimize jointly –

$$\mathbf{w}^*, \mathbf{\theta}^* = \arg\min_{\mathbf{w}, \mathbf{\theta}} \sum_{(e_q, r_q, e_a) \in Q_{\text{tra}}} \mathcal{L}(F(\mathbf{w}, \widehat{\mathcal{G}}_{e_q, r_q}^L(\mathbf{\theta})), e_a)$$

$$\mathcal{L}(F(\mathbf{w}, \widehat{\mathcal{G}}^L(\boldsymbol{\theta})), e_a) = -\sum_{e_o \in \mathcal{V}_{e_q, r_a}^L} y_{e_o} \log(\phi_{e_o}) + (1 - y_{e_o}) \log(1 - \phi_{e_o})$$

- Advantages
 - 1. Entity-efficient, linear w.r.t. layers. (Proposition 1)
 - 2. Layer-wise connections can be preserved! (Proposition 2)
 - 3. Proposed sampling strategy has more chance of preserving 'good' entities compared to others for same number of nodes.

PROPOSITION 1. The number of involved entities in the propagation path $(\bigcup_{\ell=0...L} \mathcal{V}_{e_q,r_q}^{\ell})$ of incremental sampling is bounded by O(LK).

PROPOSITION 2. For all the entities $e \in V_{e_q,r_q}^{\ell-1}$ with incremental sampling, there exists at least one entity $e' \in V_{e_q,r_q}^{\ell}$ and relation $r \in \mathcal{R}$ such that $(e,r,e') \in \mathcal{E}$.

Algorithm 1 AdaProp: learning adaptive propagation path.

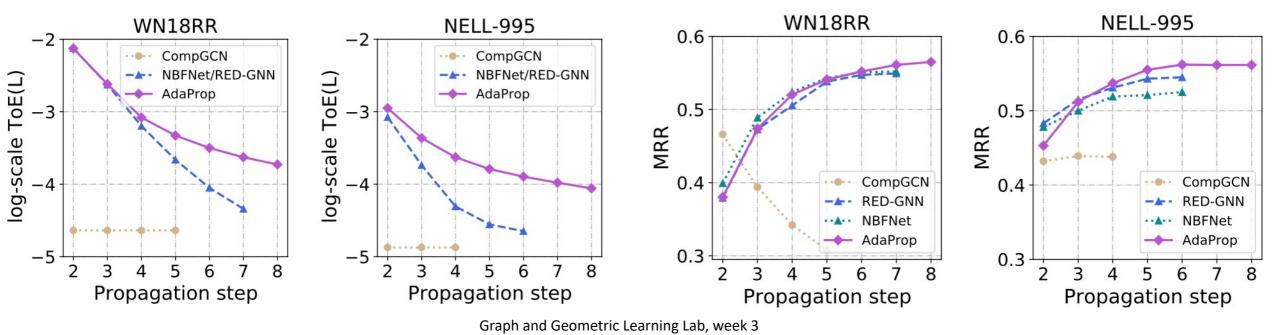
Require: query $(e_q, r_q, ?)$, $\mathcal{V}_{e_q, r_q}^0 = \{e_q\}$, steps L, number of sampled entities K, and functions MESS (\cdot) and AGG (\cdot) .

- 1: **for** $\ell = 1 ... L$ **do**
- 2: get the neighboring entities $\mathcal{N}(\mathcal{V}_{eq,r_q}^{\ell-1}) = \bigcup_{e \in \mathcal{V}_{eq,r_q}^{\ell-1}} \mathcal{N}(e)$, the newly-visited entities $\overline{\mathcal{V}}_{eq,r_q}^{\ell} = \mathcal{N}(\mathcal{V}_{eq,r_q}^{\ell-1}) \setminus \mathcal{V}_{eq,r_q}^{\ell-1}$, and edges $\mathcal{E}^{\ell} = \{(e_s, r, e_o) | e_s \in \mathcal{V}_{eq,r_q}^{\ell-1}, e_o \in \mathcal{N}(\mathcal{V}_{eq,r_q}^{\ell-1})\}$;
- 3: obtain $\boldsymbol{m}_{(e_s,r,e_o)}^{\ell}$:= MESS $(\boldsymbol{h}_{e_s}^{\ell-1},\boldsymbol{h}_{e_o}^{\ell-1},\boldsymbol{h}_{r}^{\ell},\boldsymbol{h}_{r_q}^{\ell})$ for edges $(e_s,r,e_o)\in\mathcal{E}^{\ell};$
- 4: obtain $h_{e_o}^{\ell} := \delta(AGG(m_{(e_s,r,e_o)}^{\ell}, (e_s,r,e_o) \in \mathcal{E}^{\ell}))$ for entities $e_o \in \mathcal{N}(\mathcal{V}_{e_g,r_g}^{\ell-1})$;
- 5: **logits computation:** obtain the Gumbel logits $G_{e_o} = g(h_{e_o}^{\ell}; \theta^{\ell}) \log(-\log U_{e_o})$ with $U_{e_o} \sim \text{Uniform}(0, 1)$ for entities $e_o \in \overline{V}_{e_q, r_q}^{\ell}$;
- 6: **candidate sampling:** obtain sampled entities $\widetilde{V}_{e_q,r_q}^{\ell} = \{\arg top_K G_{e_o}, e_o \in \overline{V}_{e_q,r_q}^{\ell}\};$
- 7: **straight-through:** $h_e^{\ell} := (1 \text{no_grad}(p^{\ell}(e)) + p^{\ell}(e)) \cdot h_e^{\ell}$ for entities $e \in \widetilde{V}_{e_a,r_a}^{\ell}$;
- 8: **update propagation path:** update $V_{e_a,r_a}^{\ell} = V_{e_a,r_a}^{\ell-1} \cup \widetilde{V}_{e_a,r_a}^{\ell}$;
- 9: end for
- 10: **return** $f(\mathbf{h}_{e_o}^L; \mathbf{w}^\top)$ for each $e_o \in \mathcal{V}_{e_q, r_q}^L$.

- Compare against strong inductive and transductive baselines.
- Also introduced a new metric to quantify effectiveness of the sampling algorithm.

$$ToE(L) = TC(L)/EI(L)$$

Transductive setting.



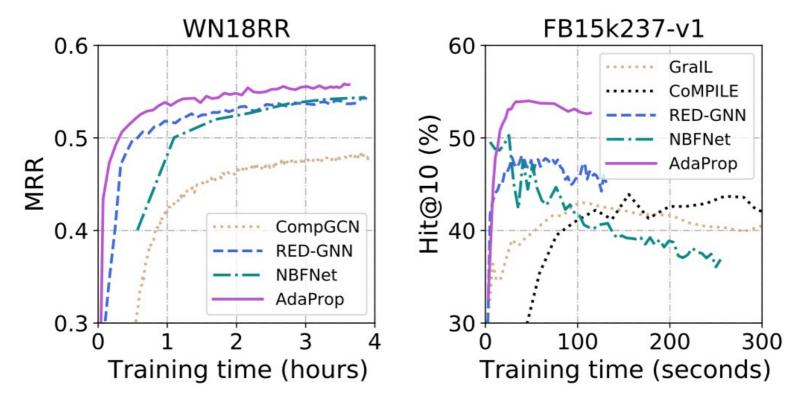
Transductive setting.

													· <u>-</u>						
type	models		Family		UMLS		WN18RR		FB15k237		NELL-995		YAGO3-10		10				
	models	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
	ConvE	0.912	83.7	98.2	0.937	92.2	96.7	0.427	39.2	49.8	0.325	23.7	50.1	0.511	44.6	61.9	0.520	45.0	66.0
	QuatE	0.941	89.6	99.1	0.944	90.5	99.3	0.480	44.0	55.1	0.350	25.6	53.8	0.533	46.6	64.3	0.379	30.1	53.4
non-GNN	RotatE	0.921	86.6	98.8	0.925	86.3	99.3	0.477	42.8	57.1	0.337	24.1	53.3	0.508	44.8	60.8	0.495	40.2	67.0
	MINERVA	0.885	82.5	96.1	0.825	72.8	96.8	0.448	41.3	51.3	0.293	21.7	45.6	0.513	41.3	63.7	_	_	_
	DRUM	0.934	88.1	<u>99.6</u>	0.813	67.4	97.6	0.486	42.5	58.6	0.343	25.5	51.6	0.532	46.0	66.2	0.531	45.3	67.6
	RNNLogic	0.881	85.7	90.7	0.842	77.2	96.5	0.483	44.6	55.8	0.344	25.2	53.0	0.416	36.3	47.8	0.554	50.9	62.2
	RLogic	_	_	-	_	_	-	0.47	44.3	53.7	0.31	20.3	50.1	_	_	_	0.36	25.2	50.4
	CompGCN	0.933	88.3	99.1	0.927	86.7	99.4	0.479	44.3	54.6	0.355	26.4	53.5	0.463	38.3	59.6	0.421	39.2	57.7
GNNs	NBFNet	0.989	98.8	98.9	0.948	92.0	99.5	0.551	<u>49.7</u>	66.6	0.415	32.1	59.9	0.525	45.1	63.9	0.550	47.9	68.6
	RED-GNN	0.992	98.8	99.7	0.964	<u>94.6</u>	99.0	0.533	48.5	62.4	0.374	28.3	55.8	0.543	<u>47.6</u>	<u>65.1</u>	0.559	48.3	68.9
	AdaProp	0.988	98.6	99.0	0.969	95.6	99.5	0.562	49.9	67.1	0.417	33.1	<u>58.5</u>	0.554	49.3	65.5	0.573	51.0	68.5

Inductive setting.

atui a		WN18RR				FB15k237				NELL-995			
metric metho	methods	V1	V2	V3	V4	V1	V2	V3	V4	V1	V2	V3	V4
	RuleN	73.0	69.4	40.7	68.1	44.6	59.9	60.0	60.5	76.0	51.4	53.1	48.4
	Neural LP	77.2	74.9	47.6	70.6	46.8	58.6	57.1	59.3	87.1	56.4	57.6	53.9
	DRUM	77.7	74.7	47.7	70.2	47.4	59.5	57.1	59.3	<u>87.3</u>	54.0	57.7	53.1
Hit@10 (%)	GraIL	76.0	77.6	40.9	68.7	42.9	42.4	42.4	38.9	56.5	49.6	51.8	50.6
	CoMPILE	74.7	74.3	40.6	67.0	43.9	45.7	44.9	35.8	57.5	44.6	51.5	42.1
	NBFNet	82.7	<u>79.9</u>	<u>56.3</u>	70.2	<u>51.7</u>	<u>63.9</u>	58.8	55.9	79.5	<u>63.5</u>	<u>60.6</u>	<u>59.1</u>
	RED-GNN	79.9	78.0	52.4	<u>72.1</u>	48.3	62.9	60.3	<u>62.1</u>	86.6	60.1	59.4	55.6
	AdaProp	86.6	83.6	62.6	75.5	55.1	65.9	63.7	63.8	88.6	65.2	61.8	60.7

Training time.



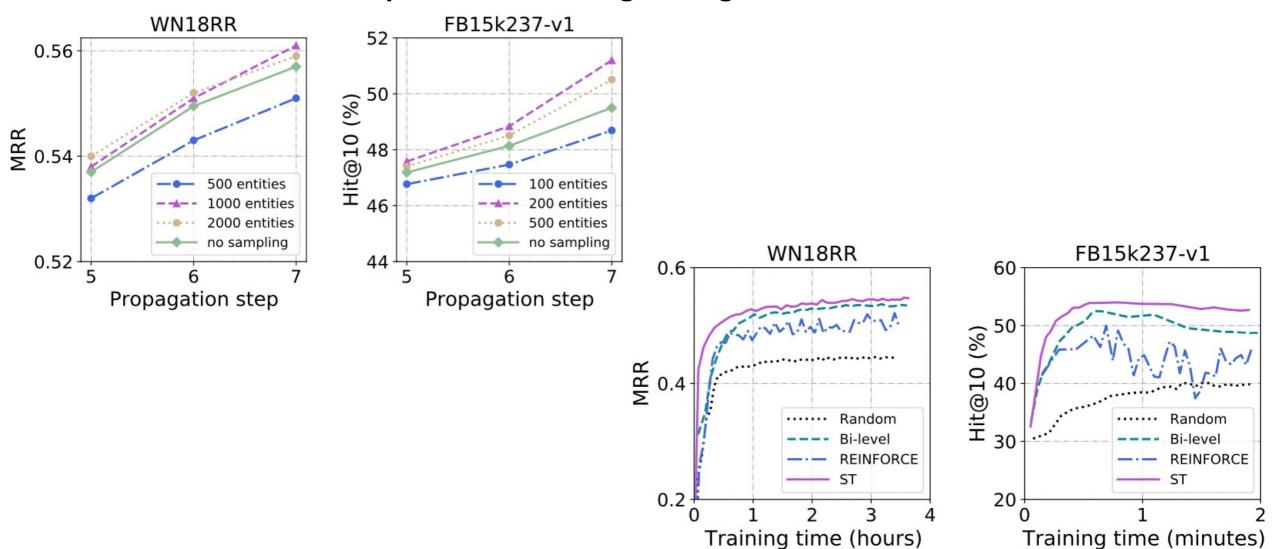
5. Ablation -

Importance of sampling strategies and learning.

learn	methods	·	WN18RR		FB15k237-v1				
learn	methous	EI(L)	$\mathtt{ToE}(L)$	MRR	EI(L)	$\mathtt{ToE}(L)$	Hit@10		
	Node-wise	4831	1.38E-4	.416	585	1.35E-3	38.9		
not	Layer-wise	5035	1.46E-4	.428	554	1.45E - 3	37.2		
learned	Subgraph	5098	1.57E-4	.461	578	1.50E - 3	40.5		
	Incremental	4954	1.61E-4	.472	559	1.52E-3	40.1		
	Node-wise	4913	1.52E-4	.529	561	1.47E-3	50.4		
learned	Layer-wise	4871	1.64E-4	.533	556	1.55E - 3	52.4		
	Incremental	4749	1.78E-4	.562	564	1.57E-3	55.1		

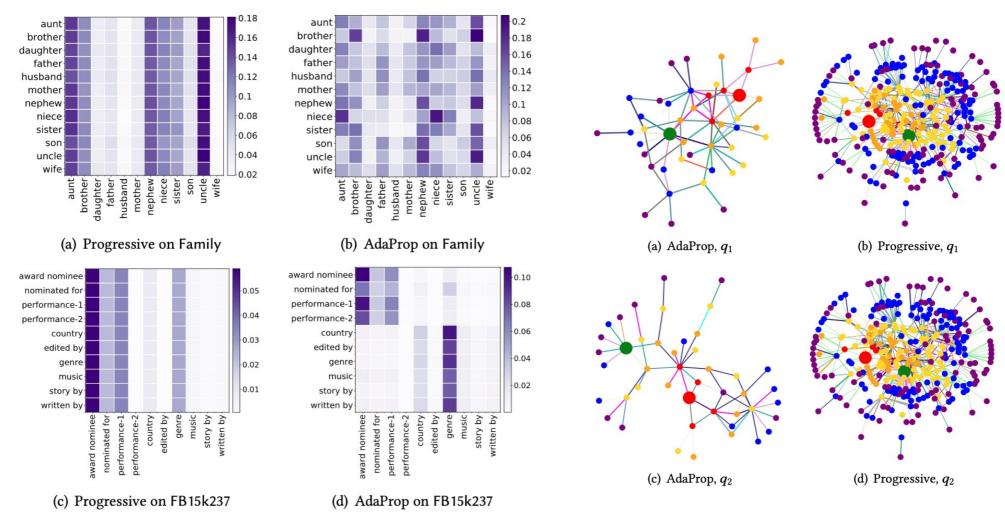
5. Ablation -

• Influence of K & Comparison of learning strategies.



6. <u>Case Study</u> –

- Left: demonstration that sampling is semantic aware.
- Right: example paths of AdaProp vs Progressive algorithms.



Graph and Geometric Learning Lab, week 3