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Introduction –

• Inductive Relation Prediction, test set != train set,
• Subgraph-based methods,
• Rule-inducEd Subgraph repre-senTations (REST),
• Faster inference.

Related work –

• Rule based methods, involve ILP; not scalable.
• Subgraph-based methods, basically sample neighborhoods then GNN.
• GNNs for reasoning on entire KGs (not considered by the paper?).
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Problem definition –

• Inductive Relation Prediction BUT all relations in the new graph must be seen 
during training, basically, Transductive w.r.t. relations but inductive w.r.t 
entities.

• Can predict head, relation and tail with this restriction.

REST –

• Subgraph Extraction.
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REST –

• Single source initialization.

• Edge-wise message passing.
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REST –

• Edge-wise message passing, e.g.
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REST –

• RNN Based functions,
 
• For Message,

• For Aggregate,
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REST –

• RNN Based functions,
 
• For Update,

• Final score,

Analysis –

• claim : REST can learn rule induced subgraph representations.
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Experiments –

• Main results on 3 inductive datasets.
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Ablation Study –

• Importance of single source init. and edge-wise message passing.x
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Extraction Efficiency –
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Introduction –

• In-context Learning,
• Challenges,
• prompt-graph,
• PRODIGY, an architecture + new pre-training tasks,
• SOTA performance. 
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Pre-training to enable in-context learning –

• For the data graph, (MD can be any GNN)

for node classification, pick the node’s embedding,

for edge classification,

• For the task graph, MT is -

• Prediction read-out, 
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Pre-training to enable in-context learning –

• In-context pre-training, formulate pre-training tasks to utilize in-context 
information so that inference can be done in the same way.

• Generation 1, Neighbor matching. (this is for when downstream is node-level, can be extend to edges)

• Generation 2, Multi-task. (when we have both node and edge level signals, must know f)
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Pre-training to enable in-context learning –

• In-context pre-training, formulate pre-training tasks to utilize in-context 
information so that inference can be done in the same way.

• Prompt Graph, with augmentation. 
Basically, Drop random nodes + Mask random nodes for each data graph,
Then create the Task graph from all Data nodes.

• Pre-training loss.
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Experiments –

• arXiv paper category classification,

• On KGs
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Ablations –

• For PG-NM setting,

• Number of shots vs contrastive,
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Ablations –

• Scaling w/ data,

Also beats meta-learning based SOTA method.
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Introduction –

• Improving the expressive power beyond WL test,
• Current approaches, expensive,
• Encode multisets of subgraphs,
• Develop a network for this symmetry group,
• Subgraph selection which can be a problem, is reduced by stochasticity,
• SOTA results on synthetic and real-world datasets,
• DL on sets.
• Main paper focuses on Graph Classification/Regression.
• Setup – 
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ESAN –

• Selecting Fs : Preserving equi-variance under the symmetry group,
• P-equivariant layers,
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ESAN –

• For DS-GNN, L2 is set to 0.
• Selecting SG : Node-deleted (ND), Edge-deleted (ED), and ego-networks 

(EGO, EGO+).
• Stochastic Sampling, subgraph sub-sampling for large graphs.

• Invariance lost.
• Different from previous works.
• Theoretical Analysis –
• First, they have provided a ESAN analogue of the WL test.
• And then,
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ESAN –

• Theoretical Analysis Contd. –
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Experiments –

• On synthetic datasets

Non-Stochastic Variant
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Experiments –

• On OGB

• Zinc12k
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Idea2 –

• Still, separate Molecular and KG GNNs, but a better, more expressive 
”adapter” in between, i.e. learned query tokens. Something like,

• Have full Molecular and KG GNNs (not frozen), and on top a few 3-4 layers of 
this type of an interaction module (between [VNode] and mol. emb. from 
KG).

• Same losses as in Gode, but for contrastive similarity use all query tokens.
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Idea2 –

• Benefits –

• Can allow for query tokens (because shared) to capture 
“global” properties instead of being limited to a subgraph 
in the KG.

• May be parameter efficient?
• No information bottleneck, free communication through 

attention mechanism.
• Can use query tokens in a variety of ways, for in-context 

learning as well, combining prev. paper and MHNfs, which 
is not limited to classification tasks.

• This way we can also do semi-inductive prediction over 
entities, relations must still be transductive.
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