00000000
0000000
000000
%O

LLM Merging - Combined Paper discussion

Evolutionary Optimization of Model Merging Recipes Sarang
Editing Models with Task Arithmetic Tejas
WARM: On the Benéefits of Weight Averaged Reward Models Yash
Rewarded soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards Shreyas V
Arcee's MergeKit: A Toolkit for Merging Large L anguage Models Ankita
TIES-Merging: Resolving Interference When Merging Models Karan
LoraHub: Efficient Cross-Task Generalization via Dynamic L oRA Composition Aaron
Ziplt! Merging Models from Different Tasks without Training Harsh
Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization Sasmit

Drive link

https://drive.google.com/drive/folders/1hXs128otI63VJCWxGyNKd1FgewYXKpnO
https://arxiv.org/abs/2403.13187v1
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2401.12187
https://arxiv.org/abs/2306.04488
https://arxiv.org/abs/2403.13257
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2212.10445

ICLR 2023 - EDITING MODELS WITH TASK ARITHMETIC

a) Task vectors b) Forgetting via negation | ¢) Learning via addition d) Task analogies Addition - Learning/Merging
O() T Thew = TA +TB Tonew = T¢ + (7B — 7.4)
ft B * results in better multi-task
O models
/ B L * maintains 98.9% of the
¥ TC accuracy
F Thew = —T d

Opre * average perf. increases as

Example: making a more task Vectors are added

1 S s isd Example: building a Example: improving
7 = Ot — Opre “"%‘Jf‘g; noee pl,o(t nee multi-task model domain generalization PR P T T T T
ess toxic content Number of task vectors
A task is defined by a dataset and a loss function used for fine-tuning. R e — <& : g:"‘ ETDSAT : Eumgl- :S';';:;S
ra - . _ rs, Euro! uro: v
A task vector specifies a direction in the weight space of a pre-trained B sl : 1 @ Cars, GTSRB & EUroSAT. SVHN
model, such that movement in that direction improves performance on the c :) v ® Cars, MNIST # GTSRB, MNIST
task S osop 2 100~ gy ".“‘ i @ Cars, RESISCAS # GTSRB, RESISCA5
' 2 - 099~ 8] ® Cars, SUN397 4 GTSRB, SUN397
B 0w = B+ AT, S oss) pii] o A ® Cars, SVHN # GTSRB, SVHN
% s aETE = nn / : W DOTD, EuroSAT #® MNIST, RESISC45
S 080~) i / i ®m DTD, GTSRB ® MNIST, SUN397
B . . & 0961 / : W DTD, MNIST # MNIST, SVHN
Negation - Forgetting or Unlearning E - 095t o5 i | W D7D, RESISC45 # RESISC45, SUN397
CV: CLIP - control task (ImageNet), Forget task (CARS, SUN397, DTD, 5 : . W DTD, SUN397 # RESISC45, SVHN
MNIST) BT b | @ EurSAT.GTSHE -.er Average seroshot
NLP: Toxic generation in GPT-2, ~(finetune to produce toxic content) e moad ac"cfjracy"g; Tashy %0 4 FEUOSAT.MNIST --- Average fine-tuned

Adding pairs of task vectors from image classification tasks

Task Analogy - A:B :: C:D

Domain Generalise: Yelp - sentiment, unsup Im; Amazon - sentiment, Method MRPC RTE CoLA SST-2 Average
unsup Im; _ . Zero-shot 74.8 52.7 8.29 92.7 57.1
Subpopulation w/ little data: (Imagenet, human draw); (real dog:real lion Fine-tuned 88.5 773 523 94.5 78.1

:: sketch dog:sketch lion) Fine-tuned + task vectors 89.3 08 77.5:02) 53.0 z07 94.7 z02) 78.6 (+05)
Kings & Queens: Kings:Queens :: Man:Woman (FT over pretrained CLIP

classifier) For four text classification tasks from the GLUE benchmark, adding task vectors downloaded

from the Hugging Face Hub can improve accuracy of fine-tuned T5 models

RLHF

Prompts Dataset

x: A dogis...

' ~\ (" Tuned Language)
Initial Language Model Model (RL Policy)

/ /0 /QZ\

Reinforcement Learning
Update (e.g. PPO)

S0 0+ Ve ()

Base Text 2®®® RLHF ®®®® Reward (Preference)
®® ©®® Tuned Text ®®®® Model
y: a furry mammal y: man’s best friend > i %m\\
_] \\ Z y, RN Ve
y ‘
Z >
— kL Dk (7ppo (Y]2) || Thase (ylT)) s @
7
KL prediction shift penalty
ro(y|z)

Source: https://huggingface.co/blog/rlhf

WARM

RL fine-tuning

Aligned LLM
Sample from policy RL fine-tune step

Generate output by feeding Assign a reward to the Use RL to maximize reward
P> anuniabeled input data point > model's output. > by updating weights. —9»

SFT
@ WARM:
@ . Weight Averaged

Reward Model

Collect preference dataset

Human or Al pairwise feedback.

00

o

Multiple R 8 .
fine-tunings with s :
different @ Weight averaging

hyperparams

(a) WARM procedure with M = 3.

Source:

ettt o 1wt e AL ANA ANNAO™

11

10

Control reward
<

—_— WA
049 _x=_,,-—o“——< ENS
S ——- Diag

0.0 0.2 0.4 06 o8

A

(a) Train (corrupt).

—e— WARM M =10

“ —+— WARMM=6
WARM M =2
-~~~ ENSM=2
R Ind ¢
4 Ind ¢,
2000 4000 6000 8000
steps

(b) WARM mitigates reward hacking.

Control reward gain

Experiment Results

0.902

0778

0776

0774

0772

Acc.

0770

0.768

0.766

0.716

0.71a

Acc.
o
R

0.710

0.708

0.0

(d) Test (OOD).

035
0251 —— WARMM =6 —— WARMM=6
o WARM M =2 . °‘ WARM M =2
- =2 o5 == ENSM=2
Ind
¢ s ind ¢
e Ind ¢, < P— Ind ¢y
- 5 £ o
3))
B0 s p 020 B
o 4 B 03
- = 015 - -
Lo £ £ o2
5 g g e -
© e ——— Yot © » 27N ol
L i P ;""“"-—.-‘/“ N
0.05 g -
< 0.05 o
0.00 0.00 =01
0.2 04 06 08 10 12 0.2 04 06 08 10 12 o 1 2 § 4 5 6 o 1 2 3 4 5 6

KL :logiN) - %51

(@) PaLM (clean).

KL:fag(N) =252

(b) PaLM (corrupt).

3 =1
KL :log(N) = 452

(©) T5 (clean).

KL :log(N) =252

(d) T5 (corrupt).

LORA Hub

Mashing together many LoRA modules

Problem Statement + Proposed Solution

Problem: LoRA Fine tuning is generally done on similar tasks and does not generalize well across
multiple tasks.

Solution: Train many LoRA modules and use them together. This is done in 2 phases, Compose
and Adapt.

Compose - Element wise composition of LORA modules

= (w1A1 + ’LU2A2 +sait wNAN)('wlBl + wng + -4 ’LUNBN).

Adapt - Weight optimization via Gradient Free methods

| couldn’t understand what gradient free methods were used here. But the paper

mentions Covariance Matrix Adaptive Evolution Strategies (CMA-ES). Authors did
not use Gradient Descent.

Results

Authors used Flant-T5-Large and evaluated performance on Big-Bench Hard
(BBH) Benchmark. Authors picked 20 random LoRA modules for the results.

Results on next slide.

QnA by authors:

1. Does rank of LORA module matter? Somewhat, in comparison of 4 to 64

ranks, 16 outperforms consistently.
2. |Is more LoORA modules better? Not after a certain point, it may give better
performance but variance in results increases drastically.

Table 1: Experimental results of zero-shot learning (Zero), few-shot in-context learning (ICL), IA3
fine-tuning (IA3), LoRA tuning (LoRA), full fine-tuning (FFT) and our proposed few-shot LoraHub
learning (LoraHub) on the BBH benchmark with FLAN-T5-large as the base LLM. We denote
algorithmic tasks with the superscript § following previous work (Wu et al., 2023b). Note that we
employ three runs, each leveraging different 5-shot examples per task, as demonstrations for all few-
shot methods. The average performance of all methods is reported below, and the best performance
of each few-shot method can be found in the Appendix A.

Task Zero ICL.,; IA3.,; LoRA.,; FFT,, LoraHub,,,
Boolean Expressions 54.0 59.6 56.2 56.0 62.2 555
Causal Judgement a1 59.4 60.2 55.6 57.5 54.3
Date Understanding 153 204 20.0 358 593 329
Disambiguation 0.0 69.1 0.0 68.0 68.2 452
Dyck Languages 1:3 0.9 4.2 2050 19:5 1.0
Formal Fallacies 513 55.3 51.5 53.6 54.0 52.8
Geometric Shapes 6.7 19.6 14.7 24 31.1 7.4
Hyperbaton 6.7 71.8 49.3 553 773 62.8
Logical Deduction® 213 391 327 40.0 422 36.1
(five objects)
Logical Deduction® 127 407 338 37.3 449 36.8
(seven objects)
Logical Deduction’ 00 516 85 53.6 529 457
(three objects)
Movie Recommendation 62.7 55.8 61.8 515 66.0 553
Multistep Arithmetic 0.7 0.7 0.7 0.2 0.0 0.4
Navigate 473 453 46.2 48.0 48.0 47.1
Object Counting 347 32.4 35.1 38.7 35.6 33.7
Penguins in a Table 43.5 41.3 45.0 36.2 319 359
Reasoning about Colored Objects 320 40.2 40.7 39.6 37.6 40.0
Ruin Names 233 19.3 244 37.8 61.3 24.4
Salient Translation Error Detection ~ 37.3 473 371 16.0 16.2 36.0
Snarks 50.0 54.2 539 55.6 66.7 56.9
Sports Understanding 56.0 54.7 55.1 56.5 54.0 56.7
Temporal Sequences 16.7 25:1 18.2 25:1 37.8 18.2
Tracking Shuffled Objects’ 120 120 120 138 16.9 123
(five objects)
Tracking Shuffled Ob_]ecl:s§ 6.7 6.7 6.7 10.0 9.8 77
(seven objects)
Tracking Shuffled Objects* 247 311 307 309 320 292
(three objects)
Web of Lies 54.0 53.8 54.2 52.7 48.2 50.1
Word Sorting 1.3 0.5 1.3 49 49 1.1
Avg Performance Per Task 27.0 373 31.6 371 42.1 34.7
Avg Tokens Per Example 111.6 597.8 111.6 111.6 111.6 111.6
Gradient-based Training No No Yes Yes Yes No

Original Values
=== Model 1 === Model 2

A

—>

v
D No Interference O Redundant O Sign Conflict

[] : parameter
=3 : Influential values
-3 ! Redundant values

Task Vectors 7

Merged Values
9 Mean == TIES

TIES-MERGING: Resolving Interference When
Merging Models

[arXiv][GitHub]

Prateek Yadav! Derek Tam'®
Leshem Choshen?3 Colin Raffel! Mohit Bansal®

! University of North Carolina at Chapel Hill 2 IBM Research 2 MIT

leshem.choshen@ibm.com
{praty,dtredsox,craffel, mbansal}@cs.unc.edu

Algorithm 1 TIES-MERGING Procedure.

k, and \.
Output: Merged Model 6,,,
forall t inl,...,n do
D> Create task vectors.
Ty = 0y — Oinit
D> Step 1:

Aligned Values

=P : Model 1
=3 : Model 2

: Model 3
=3 : Merged Model

(3) Disjoint Merge

Trimmed Task Vectors 7 '?t £ Sgn(ft)
fit = | Tl

end

D> Step 2:

Elect Final Signs.
Ym = sgn(3o_ 7t)
D> Step 3: Disjoint Merge.
forall pinl,...,d do

4= i€ 1n] |9 = .}

P — _1
Tm = |.AP| te Apr Ty

)

Sign Vector v,,

Merged Task

Vector 7,
end
D> Obtain merged checkpoint
0m — oinit +)\ * Tm
return 0,,

Input: Fine-tuned models {6, }}"_,, Initialization €;p,

Trim redundant parameters.

7 < keep_topk_reset_rest_to_zero(7y, k)

https://arxiv.org/pdf/2306.01708
https://github.com/prateeky2806/ties-merging

S —o—0—o
270
=
()
Z55
0 20 40 60 80 100

Keeping Top-K% Parameters

Figure 3: Performance depends on a small
fraction of high-magnitude parameters. For
each task vector, we keep only the largest - top-
k% parameters and plot the average performance
across eleven tasks. Keeping only the top-20% of
the parameter does not degrade the performance.

Method T5-base (IA)3
TIES-MERGING 74.5 70.7
— TRIM 73.0 70.6
— ELECT 73.1 69.6
— DISJOINT MEAN 72.6 67.5
— SCALE 72.0 65.5

Table 6: Ablation on all the steps of

TIES-MERGING.

o o
N w

[
=

Frac. of Params
with Conflict

o

2 3 4 5 6 7 8 9y 10 H.
Number of Models

Figure 4: Sign conflicts occur even after trim-
ming and increase with the number of models.
We plot the fraction of parameters that have a sign
conflict after trimming versus the number of mod-
els being merged.

=~ Bottom-80

—— Top-20 =@ Top-30
=®= Bottom-70 == Bottom-50

—4— Top-50

Average Performance
@
o

T

0.0 0.2 0.4 0.6 0.8 1.0
Probability of flipping the Sign

Figure 7: Flipping the signs of high magnitude pa-
rameters leads to catastrophic performance drops.
Average Performance when flipping the directions of
Top-k% and Bottom-k % parameters for each task. We
report the results averaged over eleven (IA)? tasks.

Method Average
Fine-Tuned 71.4
Multitask 73.1
Averaging [9, 82] 58.0
Task Vectors [29] 63.9
TIES-MERGING 66.4

TIES-MERGING (Oracle Sign) 72.0 [+5.6]

Table 5: TIES-MERGING can perform
close to multitask models if the signs can
be estimated correctly. We use the signs
from the multitask vector as the elected sign
and perform merging and report the perfor-
mance.

11
== Simple Averaging == Task Arithmetic ==@= TIES
il
0.9
0.8
0.7
2 3 4 5 6 7
Number of Tasks

Table 2: TIES-MERGING generalizes better. Figure 5: TIES-MERGING scales better. Aver-

Method ({) Validation PEFT Full Finetuning
Model (—) (TA)3 T5-Base T5-Large ViT-B/32 ViT-L/14 }j
FINE-TUNED - 71.4 82.8 88.8 90.5 94.2 E
MULTITASK - 73.1 83.6 88.1 88.9 93.5 Model T5-Base T5-Large g
AVERAGING [82, 9] X - 65.9 59.6 65.8 79.6 Zeroshot 311 27.6 ZD
TASK ARITHMETIC [29] X - 73.2 135 60.4 83.3 Simple Averaging [9, 82] 31.7 304 :%D
TIES-MERGING X - 69.7 [-3.2] 74.4[+09] 72.4[+6.6] 86.0[+2.7] Fisher [45] 33.8 32.0

RegMean [31] 343 36.0
FISHER MERGING [45] v 62.2 68.9 64.6 68.3 82.2 Task Arithmetic [29] 31.9 323
REGMEAN [31] v 58.0 71.2 73.2 71.8 83.7 TIES-MERGING 353[+1.0] 40.4 [+4.4]
TASK ARITHMETIC [29] v 63.9 73.2 73.3 70.1 84.5
TIES-MERGING v 66.4 [+2.5] 739 [+0.7] 769 [+3.6] 73.6[+1.8] 86.0[+1.5]

Table 1: Comparing model merging methods across multiple fine-tuning settings and modalities
(NLP and Vision) with and without the availability of a validation set.

Out of Distribution Generalization for T5-Base
and T5-Large on six held-out tasks.

age performance when merging a different num-
ber of tasks.

WNLI

MRPC
0.2

gg g g015 g g03

59 01 o ™ g 2H
- = S =
S B J = J =
E E E

£ %005 £ 3005 £ 301

0 0 0

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
K (Frac. of parameters kept.)

K (Frac. of parameters kept.) K (Frac. of parameters kept.)

Figure 9: Sign conflict increases as we trim less parameters. For each task, we merge 10 different
checkpoints from hunggingface hub and plot the sign conflict as a function of keeping only the

top-k% parameters.

e
o

4

et
|
§
o
E

e
o
a

Frac. of Params

5 6 7 8 9 10 1
Number of Models

1
w

Frac. of Params
with Conflict
il A

o = N W

' é

6 %4 8 9 10

2 3 4 5
Number of Models

Number of Models

6 7
Number of Models

Figure 10: Sign Conflict exists even when merging multiple checkpoints for the same task. The
first three plots are for RTE, MRPC, WNLI datasets when merging 10 Huggingface checkpoints,
while the last one is when merging different tasks (Figure 4 from the main paper).

Evolutionary Optimization of
Model Merging Recipes

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, David Ha
Sakana Al

https://arxiv.org/pdf/2403.13187v1
https://arxiv.org/pdf/2403.13187v1

Uses evolutionary methods to discover non-trivial ways to
merge models.

Outperforms human heuristic and intuition based model
merging.

Think NAS and NEAT.

Implements Covariance Matrix Adaptation Evolution Strategy
Parameter Space: Uses TIES-Merging enhanced with DARE.
Data Flow Space: Literature limits itself to sequential ordering
of layers. (Unstable!)

Optimizes both Data Flow Space and Parameter Space

New Model C

New Model C

Block A-1

Block A-1 Model A
Model B Model A New Model C Model B Block C-2

Block A-1

Model B

Model A

Block B-1 Block B-1
Block A-1 Block B-1 Block A-1 Block C-1 Block B-1 Block C-3

Block A-2 Block A-2 Block B-2

3 Block A-2 Block C-2 Block B-2
Block A-2 Block B-2 Block B-2

Block B-2

Block A-3 Block B-3

Block A-3 Block C-3 Block B-3

Block A-3 Block B-3

Block A-2

Block A-3

Block B3 Block C-5

Merging Models in the Data Flow Space (Layers) Merging Models in the Parameter Space (Weights) Merging Models in both Data Flow Space and Parameter Space

Experiments

e Japanese LLM + English Math LLM -> Japanese Math LLM
e Japanese LLM + English VLM -> Japanese VLM.

JP Language Model Evaluation Harness

Model Size JComQA JNLI MARC JSQUAD JAQKET XLSum XWino MGSM JCoLA Avg _ 1YPe Size MGSM-JA (acct) JP-LMEH (avg 1)
Shisa Gamma 7b v1 7B 912 721 946 739 680 259 805 296 587 66.1 JAge“elﬁal B 9.6 66.1
WizardMath 7B V1.1 7B 747 427 904 84.6 68.5 223 698 388 489 60.1 ENmat B 18.4 60.1
Abel 7B 002 7B 703 51.8 623 83.8 690 225 682 280 527 565 ENmath B 30.0 56.5
Ours (PS) 7B 89.1 657 954 89.5 777 255 812 500 60.5 70.5 1+2+3 B 52,0 70.5
Ours (DFS) 10B 677 582 535 66.8 543 173 656 300 656 532 3+1 10B 36.4 532
Ours (PS+DFS) 10B 882 503 915 78.6 778 232 730 400 730 662 4+1 10B 55.2 66.2
Llama 2 70B 70B 802 534 944 916 80.1 218 736 304 546 645 ENgeneral 70B 18.0 64.5
Japanese Stable LM 70B 70B 912 504 92.9 87.1 884 243 820 372 617 683 JAgeneral 0B 172 683
Swallow 70B 70B 953 57.2 91.7 94.1 93.9 23.1 83.3 45.2 595 71.5 JA general 70B 13.6 715

Sakana.ai's Blog

Arcee's Blog

Github - mergekit-evolve

https://sakana.ai/evolutionary-model-merge
https://blog.arcee.ai/tutorial-tutorial-how-to-get-started-with-evolutionary-model-merging/
https://github.com/arcee-ai/mergekit/blob/main/docs/evolve.md

Arcee’s MergeKit: A Toolkit for Merging Large Language Models

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers,
Vlad Karpukhin, Brian Benedict, Mark McQuade, Jacob Solawetz
Arcee, Florida, USA

A AN
[3\ / T

120

§ w
40
20 :
- - - - 2 - = E
o NENENE NN LRt ninnniiinttiniill
RRPORROINRERTRRRP AR O®
Y gt SR E A L L ol
e
Y5 EN § s £ £§3 v
Vi
J GG PTG g
fé /) § /;}
4
Model Medical Benchmarks General Benchmarks
USMLE | MedMCQA Arc Challenge | HellaSwag | MMLU

Llama2-7B-Chat (Touvron et al., 2023) 35.90 35.45 73.40 44.20 55.40 46.37
Meditron-7B (Chen et al., 2023) 38.40 24.07 71.40 40.20 54.50 33.06
MeditronLlama-7B-Lerp 39.10 36.65 75.60 46.76 58.66 48.44
MeditronLlama-7B-Slerp 39.20 36.91 75.60 46.84 58.67 47.97
MeditronLlama-7B-Dare-Ties 36.37 27.56 72.20 4292 54.79 41.17
MeditronLlama-7B-Ties 38.73 32.27 75.60 45.05 58.23 45.03

ZipIt! Merging Models from Different Tasks without Training

ICLR 2024

Background and Motivation Method
° Previous work focuses on merging 2 models trained on o What does it do ? - Merges models trained on different tasks, and allows for
same task and merge entire network, and involves merging within or across a model, with also the ability to to merge models
permuting one model to the other partially.
e Permuting creates a 1-1 mapping between the models, e Approach: Generalize merges and define unmerges, using the ‘zip’ and ‘unzip’
assuming a correlation in features - fine for models on operation

same task, but not so much for different tasks

o Why within ? - Reduces feature redundancy in a model, paper proves that loss
increase has tighter bounds than previous work. Models merged within perform
on par if not better than model not merged within.

e Merging - fZ:L()—W33+b

° Merging whole network forces merging models on
similar tasks, not ideal for merging models trained on
different tasks

) Models fine tuned from same ckpt / initalization - lie in

. . . . A B 2n;
same error/loss basin (This paper does not utilize this ->Concatenate both feature vectors - f || f € R*™i
fact) Wk = 'YWiA + (1 — ’y)WiB ->Find correlation between every element in this (prev work only did between fa
° Models with different initialization - models permuted and fb) ng X 2n;
to same loss basin can be meraed by averading weight ->if well correlated average them - find ni pairs per 2i features- M/; € R™ @
g y ging weig -> equivalent to normal averaging, but more general f?k . . (A H f)
= : i

* A B pT
Wi o ’yWi + (1 W)PZWZ' P’i—l e Unmerging - U is pseudoinverse of M x o pA B 2M T
e Git Re-basin - interpolates weights by using similarity in Split U in 2 halves, merge is lossy Ui f ~ fz ” fz 7
weights not good for merging models trained on A UB c R St
different tasks as it may find a minima that performs us,upe €
worse for both. Permute relies on the assumption that

A B
likelihood of both models lie in same basin fz+1 Lz—l—l (U f) fz—l—l Lz+1 (U f)

ZipIt! Merging Models from Different Tasks without Training

ICLR 2024

Zip Operation
Wi = MAWAUL + MPWPUZ

MEEEE Loss Model B (a) Stop zipping ,(b) Unmerge‘ (c) Resultis Multl-Heaq
G)gmmégg 20 A) ZZ (Permuted to A) (— A (Head“ —r—
) 45 LiH L5 > > L3 LiH LS >
4.0 !
" Re-Basin [V ED ik == @ LifLspLs S
| 30 \
o 25 ‘ LifLs > a(x)LE L Le >
Model A 20 A “ Modsal A Head®| || |
: 3 15 SO SIS 55 [\ b — X . /

Fioure 2 Task l.oss Landseanes for models in Tab. 1h. Model A and Model R lie in low loss

The Zip (b) Find Redundant Features (d) Propagate M and U (e) Apply M and U to Weights
'

Across models '

Operation f— sendto | A
£ 2 T f° : 1
@s00 Coo® || Lo Wt][]

Features Features Within models
i f°
2000 000 (c) Merge and Unmerge

Merged

\@/ Weights

w* we Approx. £4 Approx. £ (f) Result: One Zipped Layer
Zipped Repeat
ale & / Output S for Next Layer
(a) Two Disjoint Layers ‘ SERHESpace
O N €000
)
'
i Prev Layer i w*
"""""""" Zipped
Input Space
i

Merging Models from Different Tasks without Training

ICLR 2024

Accuracies (%) Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg Method FLOPs (G) Joint Task A Task B Avg
Model A 0.68 48.2 97.0+06 45.1 71.0 Model A 2.72 41.6 82.9 24.8 53.9+05
Model B 0.68 48.4 49.1 96.1 1 72.6-+4 Model B 2.72 41.6+02 25.1 82.8 54.0+
W. Avg Eq.) 0.68 43.0 54.1 67.5 60.8-4 W. Avg Eq.) 2.72 17.0 23.8 24.8 - 24.3
Git Re-Basin? 0.68 46.2 76.8+50 827 79.8 Git Re-Basin? 2.72 40.9 57.3+15 56.7 57.0+
Permute (gq. 2) 0.68 58.4 86.6 87.4 87.4 Permute (gq. 2) 2.72 42.8 61.6 60.5 61.0+
Ziplt!20n0 0.68 791+:10 929411 9124114 92.1+10 ZipIt!r0n0 2.72 549 .05 682105 679 06 68.004
Ensemble 1.3 87.4 97.0+06 96.1 96.6 Ensemble 5.45 3.5 + 82.9 82.8 82.8+(
Ziplt! 3,0 0.91 83831 951:07 941:15 94.6 056 ZipIt! 3,0 3.63 70204 80305 801107 80206
(a) CIFAR-10 (5+5). ResNet-20 (4 x width). (b) CIFAR-100 (50+50). ResNet-20 (8 x width).
rCI-1adK Acluraclicyd (70)
Method FLOPs (G) SD OP CUB NAB Avg
AsursEs (76) W. A 4.11 Mer1g2in9g Paif; 2 13.9 0.2 11.3
. i ; . Avg (Eq. 1) s ! ! : . .
Method FLORR(G) | Jomt Toka TkE Avg Permute 0.2 4.11 462 476 356 135 357
Model A 4.11 37200 743 110 0.5 01 374400 ZipIt!49/50 4.11 46.9 50.7 38.0 12.7 371
Model B 4.11 353+16 0.5+01 70.5+32 35.5+16 Ensemble 8.22 727 811 710 772 755
W. Avg (Eq. 1) 4.11 0.3401 0.6-0 1 0.7+01 0.6--0 1 ZipIt!ys0 6.39 626 712 628 53.0 624
; ; inIt!
Git Re-Basin* 4.11 3.1+12 5.3+26 5.7+24 5.5+17 ZipItiioso o v 66'5 A;js 606 16 657
o - erging
Pf.:rmute (Eq.2) 4.11 8.6:55 10.1+t44 1531110 12,7177 W AvE T i 08 30 06 03 T3
leIt!so/so 411 8.6 4.7 12.4 59 14.7 7.8 13.5 +6.6 Permute (Eq.2) 4.12 15.7 26.1 14.0 53 15.3
Ensemble 8.22 63.3+49 T43+40 T0.5+32 72.4+25 ZipIt!yo50 4.12 211 333 8.6 3.9 16.8
Ziplt!yyso 6.39 55.8+41 65.9+25 64.1+30 65.0+23 Ensemble 16.4 727 812 710 712 1755
ZipIt! o0 7.43 60.9 41 70.7::0 69.0.29 69.9: 19 ZipIt!;yso LLO 502 559 440 320 455
Ziplt! 050 14.1 635 708 637 631 653

