LESS IS MORE: ONE-SHOT-SUBGRAPH LINK PREDICTION ON LARGE-SCALE KNOWLEDGE GRAPH

Anonymous authors

Paper under double-blind review

Introduction –

- Semantic vs Structural models,
- Motivation -> limit info. needed for prediction,
- One-Shot subgraph Link Prediction,
- Challenges with the approach,
- Their approach.

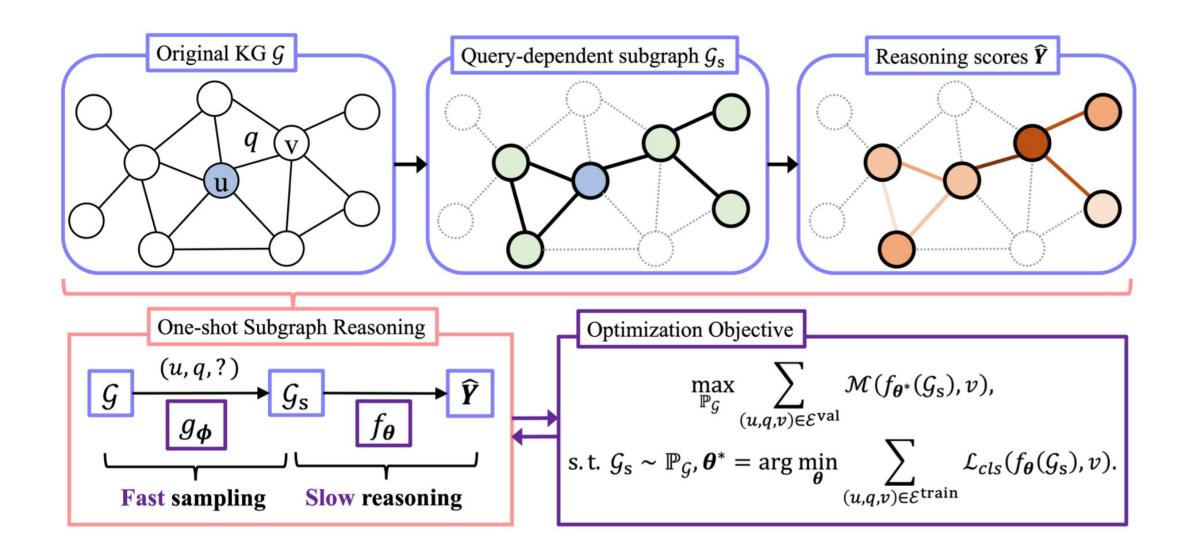
Contributions –

- Formalize the notion of one-shot link prediction,
- Solve a non-trivial, bi-level optimization problem,
- Extensive experiments to demonstrate strong performance.

Related Work –

- Semantic models,
- Efficient Semantic models,
- Structural models,
- Sampling based structural models.

One-shot-subgraph Link prediction –


$$\mathcal{G} \xrightarrow{g_{\phi},(u,q)} \mathcal{G}_{s} \xrightarrow{f_{\theta}} \hat{\mathbf{Y}}$$

$$\mathbf{H} \xrightarrow{f_{\theta},(u,q)} \hat{\mathbf{Y}}, \text{ s.t. } \mathcal{G} \xrightarrow{f_{\theta}} \mathbf{H} \qquad \qquad \mathcal{G} \xrightarrow{f_{\theta},(u,q)} \hat{\mathbf{Y}}$$

$$\mathcal{G} \xrightarrow{f_{\theta}^{(1)},(u,q)} \mathcal{G}_{s}^{(1)} \xrightarrow{f_{\theta}^{(2)},(u,q)} \mathcal{G}_{s}^{(2)} \to \cdots \to \mathcal{G}_{s}^{(L-1)} \xrightarrow{f_{\theta}^{(L)},(u,q)} \hat{\mathbf{Y}}$$

$$\left\{ \hat{\mathbf{Y}}_{v} : \mathcal{G} \xrightarrow{(u,v)} \mathcal{G}_{s}^{(u,v)} \xrightarrow{f_{\theta},(u,q,v)} \hat{\mathbf{Y}}_{v} \right\}_{v \in \mathcal{V}} \to \hat{\mathbf{Y}}$$

Graph and Geometric Learning Lab, week 11

1. Generate sampling distribution, use PPR!

Non-parametric indicator:
$$\boldsymbol{p}^{(k+1)} \leftarrow \alpha \cdot \boldsymbol{s} + (1-\alpha) \cdot \boldsymbol{D}^{-1} \boldsymbol{A} \cdot \boldsymbol{p}^{(k)}$$

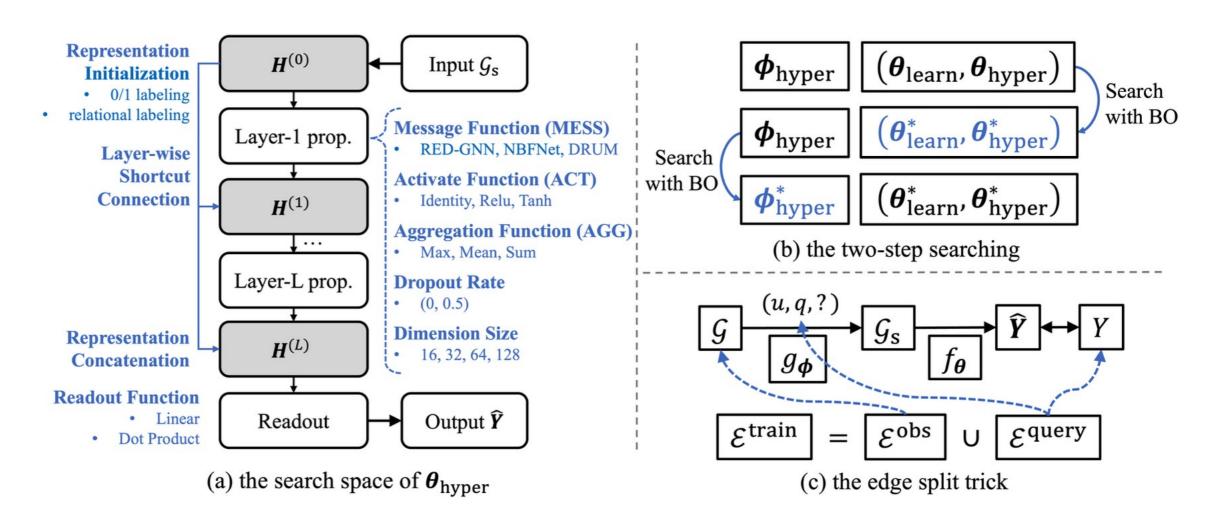
2. Extract Subgraph,

Entity Sampling:
$$\mathcal{V}_s \leftarrow \text{TopK}\Big(\mathcal{V}, \ \boldsymbol{p}, \ K = r_{\mathcal{V}}^q \times |\mathcal{V}|\Big),$$
 Edge Sampling: $\mathcal{E}_s \leftarrow \text{TopK}\Big(\mathcal{E}, \ \{\boldsymbol{p}_x \cdot \boldsymbol{p}_o : x, o \in \mathcal{V}_s, (x,r,o) \in \mathcal{E}\}, \ K = r_{\mathcal{E}}^q \times |\mathcal{E}|\Big)$

3. Propagate messages,

$$\begin{split} & \texttt{Indicating:} \boldsymbol{h}_o^{(0)} \leftarrow & \mathbb{1}(o = u), \\ & \texttt{Propagation:} \boldsymbol{h}_o^{(\ell+1)} \leftarrow & \texttt{DROPOUT} \bigg(\texttt{ACT} \Big(\texttt{AGG} \big\{ \texttt{MESS}(\boldsymbol{h}_x^{(\ell)}, \boldsymbol{h}_r^{(\ell)}, \boldsymbol{h}_o^{(\ell)}) \colon (x, r, o) \in \mathcal{E}_s \big\} \bigg) \bigg) \end{split}$$

Algorithm 1 One-shot-subgraph Link Prediction on Knowledge Graph


```
Require: KG \mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{R}), degree matrix \mathbf{D} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}, adjacency matrix \mathbf{A} \in \{0, 1\}^{|\mathcal{V}| \times |\mathcal{V}|},
       damping coefficient \alpha, maximum PPR iterations K, query (u, q, ?), sampler g_{\phi}, predictor f_{\theta}.
  1: # Step1. Generate sampling distribution
  2: initialize s \leftarrow \mathbb{1}(u), \ \boldsymbol{p}^{(0)} \leftarrow \mathbb{1}(u).
  3: for k = 1 ... K do
  4: p^{(k+1)} \leftarrow \alpha \cdot s + (1-\alpha) \cdot D^{-1} \mathbf{A} \cdot p^{(k)}
  5: end for
 6: # Step2. Extract a subgraph \mathcal{G}_s
 7: \mathcal{V}_s \leftarrow \text{TopK}(\mathcal{V}, \boldsymbol{p}, K = r_{\mathcal{V}}^q \times |\mathcal{V}|).
 8: \mathcal{E}_s \leftarrow \text{TopK}(\mathcal{E}, \{\boldsymbol{p}_u \cdot \boldsymbol{p}_v : u, v \in \mathcal{V}_s, (u, r, v) \in \mathcal{E}\}, K = r_{\mathcal{E}}^q \times |\mathcal{E}|).
 9: # Step3. Reason on the subgraph
10: initialize representations \boldsymbol{h}_{o}^{(0)} \leftarrow \mathbb{1}(o=u)
11: for \ell = 1 \dots L do
12: \boldsymbol{h}_{o}^{(\ell)} \leftarrow \text{DROPOUT}(\text{ACT}(\text{AGG}\{\text{MESS}(\boldsymbol{h}_{x}^{(\ell-1)}, \boldsymbol{h}_{r}^{(\ell-1)}, \boldsymbol{h}_{o}^{(\ell-1)}) : (x, r, o) \in \mathcal{E}_{s}\})).
13: end for
14: return Prediction \hat{y}_o = \text{Readout}(h_o^{(L)}, h_u^{(L)}) for each entity o \in \mathcal{V}_s.
```

Optimization,

$$egin{align*} oldsymbol{\phi}_{ ext{hyper}}^* &= rg \max_{oldsymbol{\phi}_{ ext{hyper}}} \mathcal{M}(f_{(oldsymbol{ heta}_{ ext{hyper}}, oldsymbol{ heta}_{ ext{learn}})}, g_{oldsymbol{\phi}_{ ext{hyper}}}, \mathcal{E}^{ ext{val}}), \ & ext{s.t.} \ oldsymbol{ heta}_{ ext{hyper}}^* &= rg \max_{oldsymbol{ heta}_{ ext{hyper}}} \mathcal{M}(f_{(oldsymbol{ heta}_{ ext{hyper}}, oldsymbol{ heta}_{ ext{learn}})}, g_{ar{oldsymbol{\phi}}_{ ext{hyper}}}, \mathcal{E}^{ ext{val}}), \ &oldsymbol{ heta}_{ ext{learn}}^* &= rg \min_{oldsymbol{ heta}_{ ext{learn}}} \mathcal{L}_{cls}(f_{(oldsymbol{ heta}_{ ext{hyper}}, oldsymbol{ heta}_{ ext{learn}})}, g_{ar{oldsymbol{\phi}}_{ ext{hyper}}}, \mathcal{E}^{ ext{train}}) \end{aligned}$$

- Search Algorithm,
 - First, we freeze the sampler $g_{\bar{\phi}}$ (with constant ϕ_{hyper}) to search for the optimal predictor f_{θ^*} with (1) the hyper-parameters optimization for θ^*_{hyper} and (2) the stochastic gradient descent for θ^*_{learn} .
 - Then, we freeze the predictor f_{θ^*} and search for the optimal sampler g_{ϕ^*} , simplifying to pure hyperparameters optimization for ϕ_{hyper}^* in a zero-gradient manner with low computation complexity.

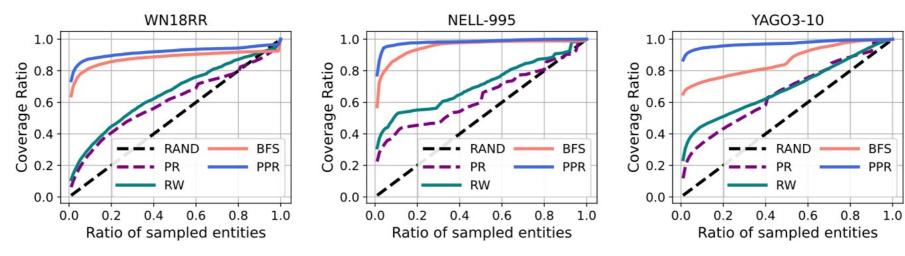
Optimization,

Theory,

Theorem 1. Let $\mathcal{G}_s^{train} \sim \mathbb{P}_{\mathcal{G}}$ and $\mathcal{G}_s^{test} \sim \mathbb{P}_{\mathcal{G}}$ be the training and testing graphs that are sampled from distribution $\mathbb{P}_{\mathcal{G}}$. Consider any two test entities $u, v \in \mathcal{V}_s^{test}$, for which we can make a prediction decision of fact (u, q, v) with the predictor f_{θ} , i.e., $\hat{\mathbf{y}}_v = f_{\theta}(\mathcal{G}_s^{test})_v \neq \tau$. Let \mathcal{G}^{test} be large enough to satisfy $\sqrt{|\mathcal{V}_s^{test}|}/\sqrt{\log(2|\mathcal{V}_s^{test}|/p)} \geq 4\sqrt{2}/d_{\min}$, where d_{\min} is the constant of graphon degree (Diaconis & Janson, 2007). Then, for an arbitrary threshold $\tau \in [0, 1]$, the testing subgraph \mathcal{G}_s^{test} satisfies that

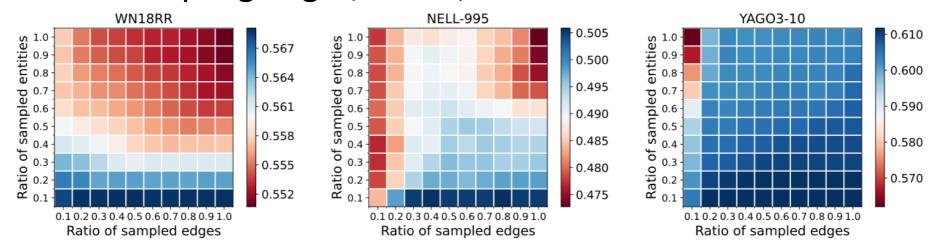
$$\frac{\sqrt{|\mathcal{V}_s^{test}|}}{\sqrt{\log(2|\mathcal{V}_s^{test}|/p)}} \ge \frac{2(C_1 + C_2||g||_{\infty})}{|f_{\theta}(\mathcal{G}_s^{test})_v - \tau|/L(M^{train})}$$
(6)

Main Results,


type	models	WN18RR			NELL-995			YAGO3-10		
type	models	MRR↑	H@1↑	H@10↑	MRR↑	H@1↑	H@10↑	MRR↑	H@1↑	H@10↑
	ConvE	0.427	39.2	49.8	0.511	44.6	61.9	0.520	45.0	66.0
Semantic Models	QuatE	0.480	44.0	55.1	0.533	46.6	64.3	0.379	30.1	53.4
	RotatE	0.477	42.8	57.1	0.508	44.8	60.8	0.495	40.2	67.0
	MINERVA	0.448	41.3	51.3	0.513	41.3	63.7	-	_	_
	DRUM	0.486	42.5	58.6	0.532	46.0	66.2	0.531	45.3	67.6
	RNNLogic	0.483	44.6	55.8	0.416	36.3	47.8	0.554	50.9	62.2
Structural Models	CompGCN	0.479	44.3	54.6	0.463	38.3	59.6	0.489	39.5	58.2
Suuciulai Models	DPMPN	0.482	44.4	55.8	0.513	45.2	61.5	0.553	48.4	67.9
	NBFNet	0.551	49.7	66.6	0.525	45.1	63.9	0.550	47.9	68.3
	RED-GNN	$\overline{0.533}$	$\overline{48.5}$	62.4	0.543	<u>47.6</u>	<u>65.1</u>	0.559	<u>48.3</u>	<u>68.9</u>
	one-shot-subgraph	0.567	51.4	66.6	0.547	48.5	<u>65.1</u>	0.606	54.0	72.1

Main Results,

type	OGBL-BIOKG Test MRR↑ Valid MRR↑ #Params↓			OGBL-WIKIKG2 Test MRR↑ Valid MRR↑ #Params↓				
Semantic Models	TripleRE AutoSF PairRE ComplEx DistMult RotatE TransE	0.8348 0.8309 0.8164 0.8095 0.8043 0.7989 0.7452	0.8360 0.8317 0.8172 0.8105 0.8055 0.7997 0.7456	469,630,002 93,824,000 187,750,000 187,648,000 187,648,000 187,597,000 187,648,000	0.5458 0.5208 0.4027 0.3729 0.4332	0.6045 0.5510 0.5423 0.3759 0.3506 0.4353 0.4272	500,763,337 500,227,800 500,334,800 1,250,569,500 1,250,569,500 1,250,435,750 1,250,569,500	
Structural Models one-shot-subgraph		0.8430	0.8435	976,801	0.6755	0.7080	6,831,201	


Entity/Relation coverage,

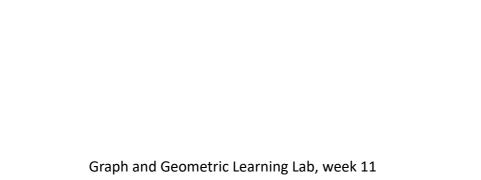
heuristics	WN18RR			1	NELL-99:		YAGO3-10			
neurisites	$r_{\mathcal{V}}^q = 0.1$	$r_{\mathcal{V}}^q = 0.2$	$r_{\mathcal{V}}^q = 0.5$	$r_{\mathcal{V}}^q = 0.1$	$r_{\mathcal{V}}^q = 0.2$	$r_{\mathcal{V}}^q = 0.5$	$r_{\mathcal{V}}^q = 0.1$	$r_{\mathcal{V}}^q = 0.2$	$r_{\mathcal{V}}^q = 0.5$	
Random Sampling (RAND)	0.100	0.200	0.500	0.100	0.200	0.500	0.100	0.200	0.500	
PageRank (PR)	0.278	0.407	0.633	0.405	0.454	0.603	0.340	0.432	0.694	
Random Walk (RW)	0.315	0.447	0.694	0.522	0.552	0.710	0.449	0.510	0.681	
Breadth-first-searching (BFS)	0.818	0.858	0.898	0.872	0.935	0.982	0.728	0.760	0.848	
Personalized PageRank (PPR)	0.876	0.896	0.929	0.965	0.977	0.987	0.943	0.957	0.973	

Graph and Geometric Learning Lab, week 11

Ablation on sampling edges/nodes,

Ablation subgraph sampling probability distribution method,

hammiatiaa		WN18RR			YAGO3-10	
heuristics	MRR	H@1	H@10	MRR	H@1	H@10
Random Sampling (RAND)	0.03	43.4	3.5	0.057	5.1	6.5
PageRank (PR)	0.124	11.5	14.2	0.315	28.9	35.9
Random Walk (RW)	0.507	45.8	59.8	0.538	46.3	67.2
Breadth-first-searching (BFS)	0.543	49.6	63.0	0.562	49.4	69.0
Personalized PageRank (PPR)	0.567	51.4	66.6	0.606	54.0	72.1


Runtime comparison,

phase	$r^q_{\mathcal{V}}$	$r^q_{\mathcal{E}} \;\;\; \Big \;\;$	WN18RR Time Memory		NEL Time	L-995 Memory	YAC	GO3-10 Memory
	1.0 0.5	1.0	Out of 26.3m	memory 20.3GB	Out of 1.6h	memory 20.1GB	Out of memory Out of memory	
Training	0.2 0.2	1.0	12.8m 6.7m	20.2GB 6.4GB	1.2h 0.6h	18.5GB 8.9GB	Out of 2.1h	f memory 23.1GB
	0.1 0.1	1.0 0.1	7.2m 6.6m	9.8GB 5.1GB	0.8h 0.3h	12.1GB 5.3GB	1.3h 0.9h	13.9GB 10.2GB
	1.0 0.5	1.0	7.3m 6.0m	6.7GB 4.3GB	17.5m 8.3m	12.8GB 4.5GB	1.6h 1.1h	15.0GB 10.1GB
Inference	0.2 0.2	1.0 0.2	3.2m 2.8m	5.8GB 1.9GB	4.2m 3.6m	12.1GB 2.5GB	0.7h 0.6h	14.7GB 3.7GB
	0.1 0.1	1.0 0.1	2.7m 2.3m	2.7GB 1.7GB	3.1m 2.9m	9.4GB 1.9GB	0.4h 0.4h	9.7GB 3.1GB

Extra,

Table 6: Comparison of prediction performance with two recent GNN methods.

methods		WN18RR				YAGO3-10			
		H@1	H@10	Time	MRR	H@1	H@10	Time	
NBFNet (100% entities)		49.7	66.6	32.3 min	0.550	47.9	68.3	493.8 min	
NBFNet + one-shot-subgraph (10% entities)		50.5	66.3	2.6 min	0.565	49.6	69.2	28.2 min	
RED-GNN (100% entities)				68.7 min				1382.9 min	
RED-GNN + one-shot-subgraph (10% entities)	0.567	51.4	66.6	4.5 min	0.606	54.0	72.1	76.3 min	

