nature machine intelligence

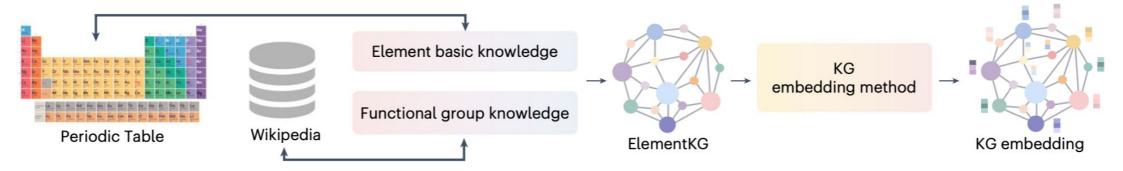
Article

https://doi.org/10.1038/s42256-023-00654-0

Knowledge graph-enhanced molecular contrastive learning with functional prompt

Received: 12 September 2022

Accepted: 6 April 2023


Yin Fang ^{1,2,3}, Qiang Zhang ^{1,2}, Ningyu Zhang ^{1,4,5}, Zhuo Chen ^{1,2}, Xiang Zhuang ^{1,2}, Xin Shao ³, Xiaohui Fan ^{3,6,7} & Huajun Chen ^{1,2,5,8}

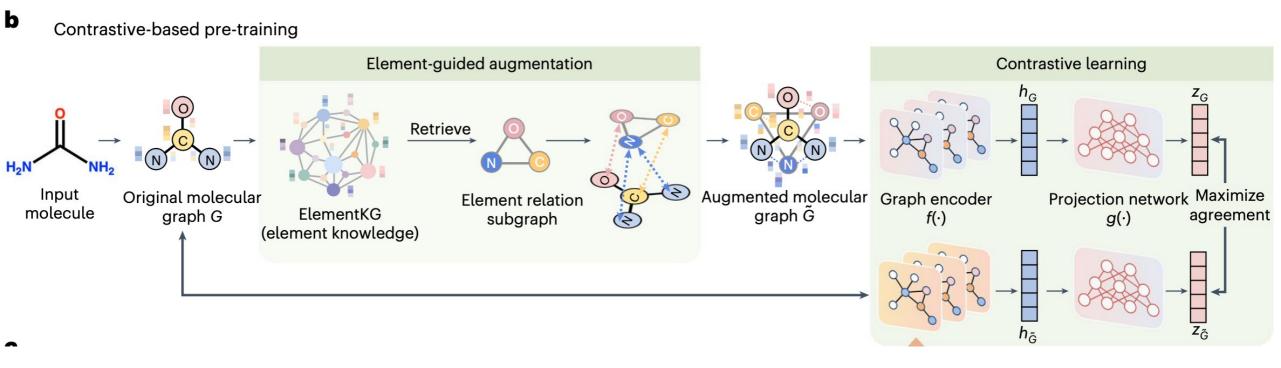
Introduction –

- Most current SSL methods, completely data-driven.
- Low generalizability + interpretability.
- Fundamental problems with current approaches.
- ElementKG.
- ElementKG guided Mol. graph augmentations.
- Functional prompting using ElemenetKG + strong expts.

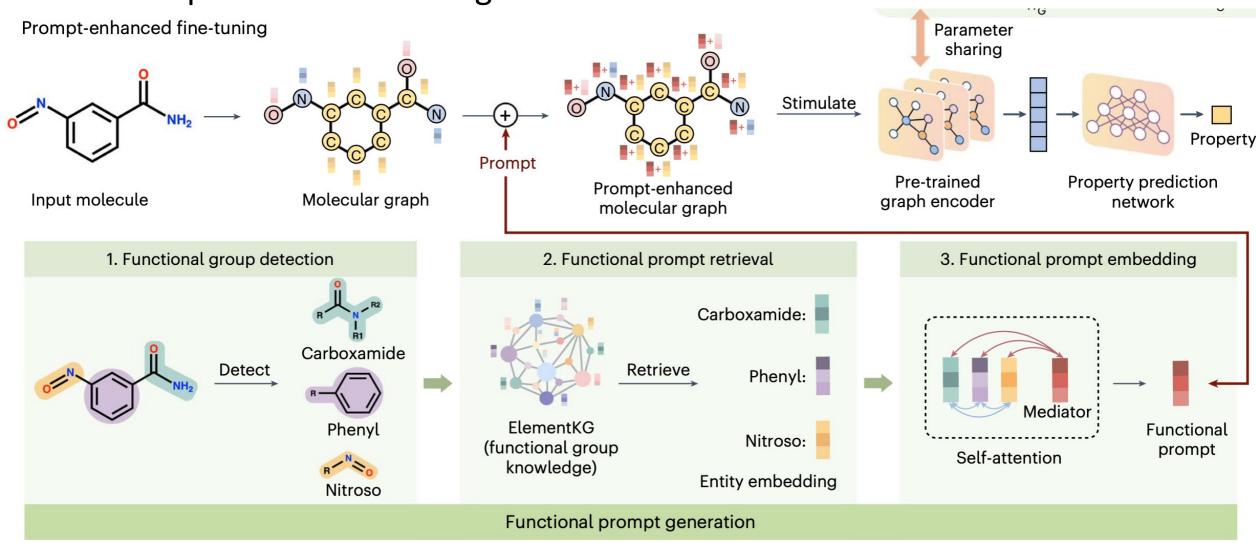
KANO –

ElementKG construction and embedding

KANO –


Use OWL2Vec to embed the KG.

Graph and Geometric Learning Lab, week 9


KANO -

Contrastive Learning. (N examples to 2N)

KANO -

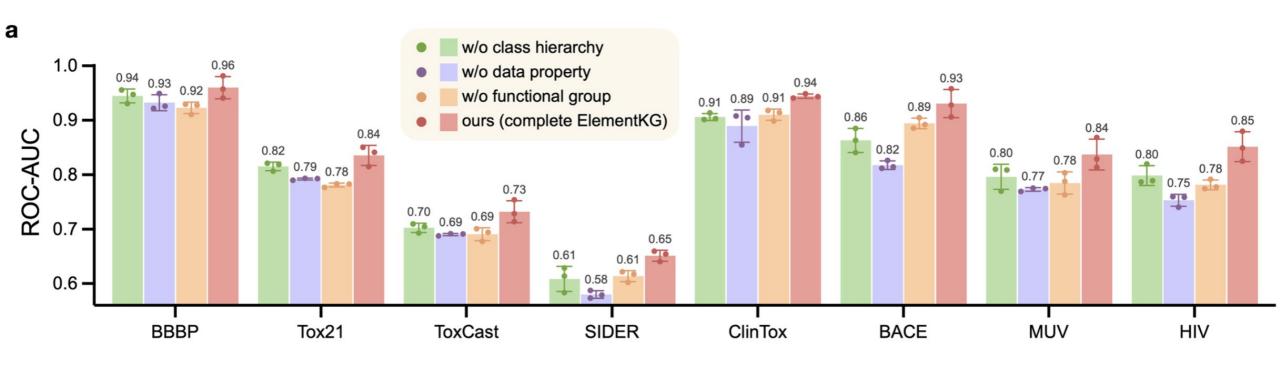
Prompt based fine-tuning.

Graph and Geometric Learning Lab, week 9

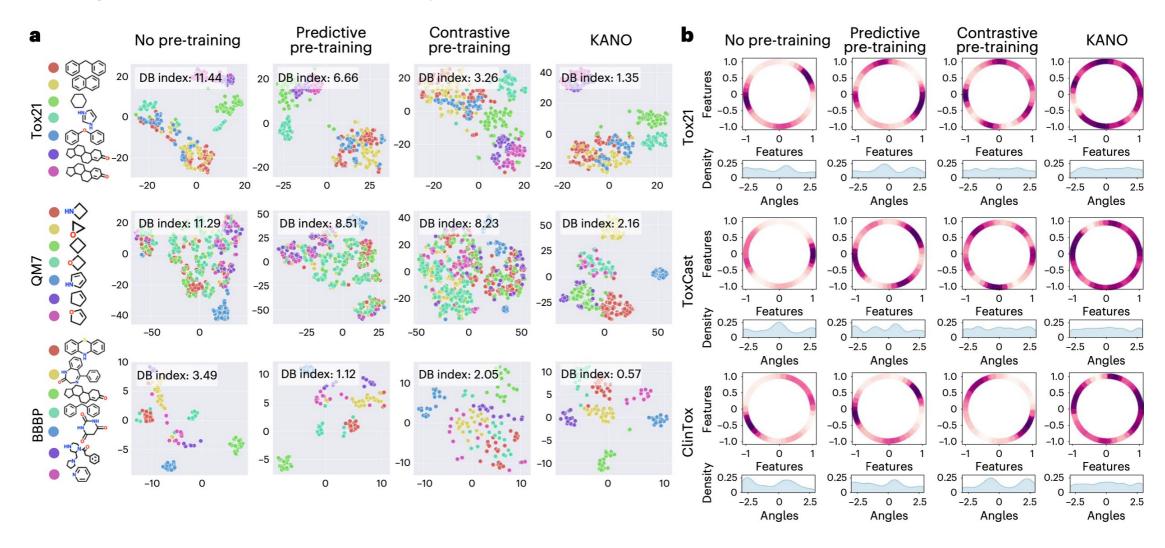
Classification tasks.

Category	Physiology			Biophysics	Biophysics					
Dataset	BBBP	Tox21	ToxCast	SIDER	ClinTox	BACE	MUV	HIV		
Number of molecules	2,039	7,831	8,575	1,427	1,478	1,513	93,807	41,127		
Number of tasks	1	12	617	27	2	1	17	1		
GCN ⁴⁷	71.8±0.9	70.9±0.3	65.0±6.1	53.6±0.3	62.5±2.8	71.6±2.0	71.6±4.0	74.0±3.0		
GIN ⁴⁸	65.8±4.5	74.0±0.8	66.7±1.5	57.3±1.6	58.0±4.4	70.1±5.4	71.8±2.5	75.3±1.9		
MPNN ⁴⁹	91.3±4.1	80.8±2.4	69.1±3.0	59.5±3.0	87.9±5.4	81.5±1.0	75.7±1.3	77.0±1.4		
DMPNN ⁵⁰	91.9±3.0	75.9±0.7	63.7±0.2	57.0±0.7	90.6±0.6	85.2±0.6	78.6±1.4	77.1±0.5		
CMPNN ²⁶	92.7±1.7	80.1±1.6	70.8±1.3	61.6±0.3	89.8±0.8	86.7±0.2	79.0±2.0	78.2±2.2		
N-GRAM ⁴⁶	91.2±0.3	76.9±2.7	-	63.2±0.5	87.5±2.7	79.1±1.3	76.9±0.7	78.7±0.4		
Hu et.al ⁷	70.8±1.5	78.7±0.4	65.7±0.6	62.7±0.8	72.6±1.5	84.5±0.7	81.3±2.1	79.9±0.7		
MGSSL ¹⁰	70.5±1.1	76.4±0.4	64.1±0.7	61.8±0.8	80.7±2.1	79.7±0.8	78.7±1.5	79.5±1.1		
GEM ⁹	88.8±0.4	78.1±0.4	68.6±0.2	63.2±1.5	90.3±0.7	87.9±1.1	75.3±1.5	81.3±0.3		
GROVER ⁸	86.8±2.2	80.3±2.0	56.8±3.4	61.2±2.5	70.3±13.7	82.4±3.6	67.3±1.8	68.2±1.1		
GraphMVP ⁵¹	72.4±1.6	75.9±0.5	63.1±0.4	63.9±1.2	79.1±2.8	81.2±0.9	77.7±0.6	77.0±1.2		
MolCLR ¹¹	73.3±1.0	74.1±5.3	65.9±2.1	61.2±3.6	89.8±2.7	82.8±0.7	78.9±2.3	77.4±0.6		
MolCLR _{CMPNN}	72.4±0.7	78.4±2.6	69.1±1.2	59.7±3.4	88.0±4.0	85.0±2.4	74.5±2.1	77.8±5.5		
KANO	96.0±1.6	83.7±1.3	73.2±1.6	65.2±0.8	94.4±0.3	93.1±2.1	83.7±2.3	85.1±2.2		

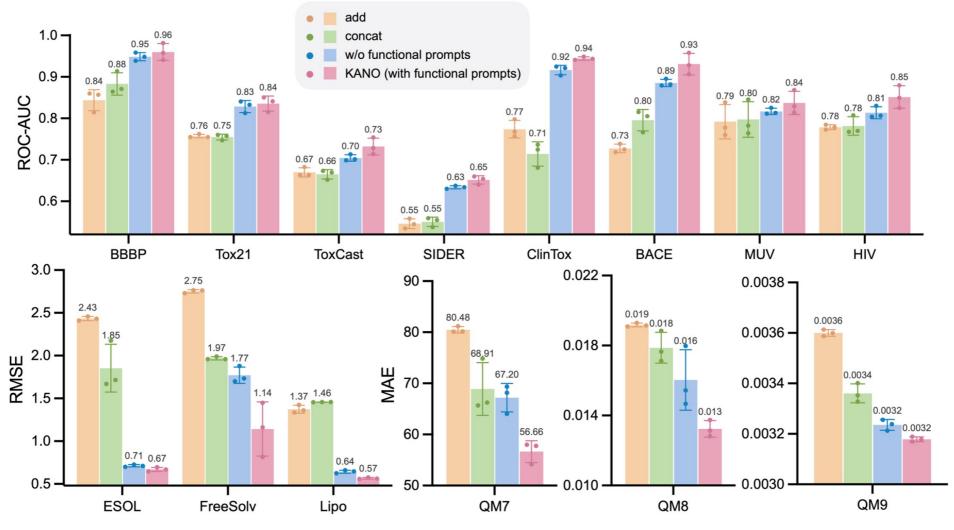
^{*}Note that the N-GRAM model on ToxCast is too time consuming to finish in time, and its results are not presented. The best-performing results are marked in bold.


Regression tasks.

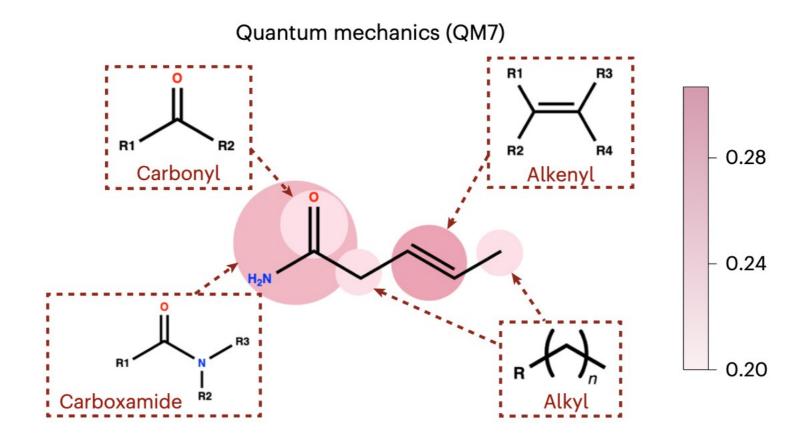
Category	Physical chemistr	у	Quantum med	Quantum mechanics					
Dataset	ESOL	FreeSolv	Lipophilicity	QM7	QM8	QM9			
Number of molecules	1,128	642	4,200	7,160	21,786	133,885			
Number of tasks	1	1	1	1	12	3			
GCN ⁴⁷	1.431±0.050	2.870±0.135	0.712±0.049	122.9±2.2	0.0366±0.000	0.00835±0.00001			
GIN ⁴⁸	1.452±0.020	2.765±0.180	0.850±0.071	124.8±0.7	0.0371±0.001	0.00824±0.00004			
MPNN ⁴⁹	1.167±0.430	1.621±0.952	0.672±0.051	111.4±0.9	0.0148±0.001	0.00522±0.00003			
DMPNN ⁵⁰	1.050±0.008	1.673±0.082	0.683±0.016	103.5±8.6	0.0156±0.001	0.00514±0.00001			
CMPNN ²⁶	0.798±0.112	1.570±0.442	0.614±0.029	75.1±3.1	0.0153±0.002	0.00405±0.00002			
N-GRAM ⁴⁶	1.100±0.030	2.510±0.191	0.880±0.121	125.6±1.5	0.0320±0.003	0.00964±0.00031			
Hu et.al ⁷	1.100±0.006	2.764±0.002	0.739±0.003	113.2±0.6	0.0215±0.001	0.00922±0.00004			
GEM ⁹	0.813±0.028	1.748±0.114	0.674±0.022	60.0±2.7	0.0163±0.001	0.00562±0.00007			
GROVER ⁸	1.423±0.288	2.947±0.615	0.823±0.010	91.3±1.9	0.0182±0.001	0.00719±0.00208			
MolCLR ¹¹	1.113±0.023	2.301±0.247	0.789±0.009	90.9±1.7	0.0185±0.013	0.00480±0.00003			
MolCLR _{CMPNN}	0.911±0.082	2.021±0.133	0.875±0.003	89.8±6.3	0.0179±0.001	0.00475±0.00001			
KANO	0.670±0.019	1.142±0.258	0.566±0.007	56.4±2.8	0.0123±0.000	0.00320±0.00001			


^{*}The best-performing results are marked in bold.

Results -


Robust Representations.

Alignment and uniformity.



Importance of functional prompts.

Graph and Geometric Learning Lab, week 9

Example of attention mechanism. (they have reported several others)

Multi-Grained Multimodal Interaction Network for Entity Linking

Pengfei Luo

School of Computer Science and Technology, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, Anhui, China pfluo@mail.ustc.edu.cn

Chen Zhu

Career Science Lab, BOSS Zhipin &
School of Management, University of
Science and Technology of China
Beijing, China
zc3930155@gmail.com

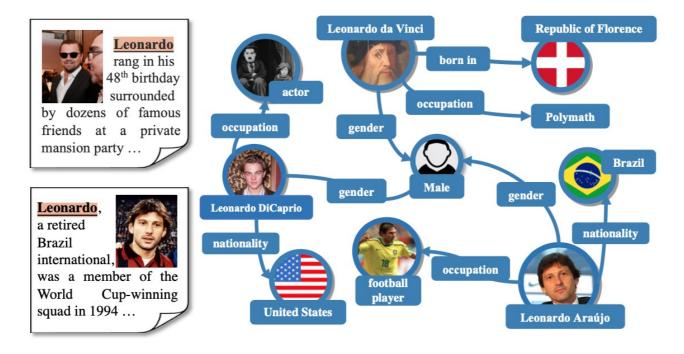
Tong Xu*

School of Computer Science and Technology, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, Anhui, China tongxu@ustc.edu.cn

Linli Xu

School of Computer Science and Technology, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, Anhui, China linlixu@ustc.edu.cn

Shiwei Wu


School of Data Science, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, Anhui, China dwustc@mail.ustc.edu.cn

Enhong Chen*

School of Computer Science and Technology, University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei, Anhui, China cheneh@ustc.edu.cn

Introduction –

Entity disambiguation (linking) in a MMKG.

MEL is a tough task.

Introduction –

- Multi-GraIned Multimodal InteraCtion network (MIMIC)
- SOTA results + strong ablation studies.

Related Work –

- Text-based entity linking local/global.
- Multimodal entity linking.

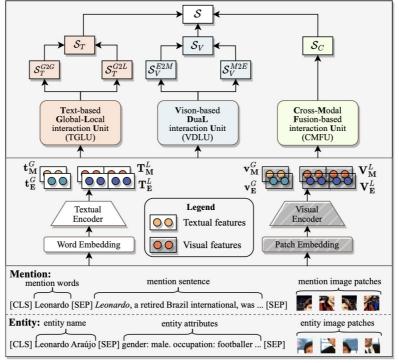
Problem Formulation –

• Entity –
$$\mathbf{E}_i = (\mathbf{e}_{n_i}, \mathbf{e}_{v_i}, \mathbf{e}_{d_i}, \mathbf{e}_{a_i})$$
 Mention – $\mathbf{M}_j = (\mathbf{m}_{w_j}, \mathbf{m}_{s_j}, \mathbf{m}_{v_j})$

Problem Formulation –

• Goal –
$$\theta^* = \max_{\theta} \sum_{(\mathbf{M}_i, \mathbf{E}_i) \in \mathcal{D}} \log p_{\theta} \left(\mathbf{E}_i | \mathbf{M}_j, \mathcal{E} \right)$$

Methodology –


For encoding images of both Entities and Messages, ViT.
 Global feature = embedding of [CLS] token; and
 Local feature = full hidden state.

$$\mathbf{V}_{\mathbf{E}_{i}} = \left[\mathbf{v}_{[\mathrm{CLS}]}^{0}; \mathbf{v}_{\mathbf{E}_{i}}^{1}; \dots; \mathbf{v}_{\mathbf{E}_{i}}^{n}\right] \in \mathbb{R}^{(n+1) \times d_{v}}$$

For textual encoding of both Entities and Messages, BERT.

$$I_{E_i} = [CLS]e_{n_i}[SEP]e_{a_i}[SEP]$$

 $I_{M_j} = [CLS]m_{w_j}[SEP]m_{S_j}[SEP]$

And similarly, [CLS] token = "Global" textual feature and full embedding is the "local" textual feature.

Graph and Geometric Learning Lab, week 9

Overall equations using Text-based Global-Local interaction Unit (TGLU),
 Vision-based Dual interaction Unit (VDLU) and Cross-Modal Fusion-based interaction Unit (CMFU).

$$S_T = \mathcal{U}_T (\mathbf{M}, \mathbf{E}) = (S_T^{G2G} + S_T^{G2L})/2,$$

$$S_V = \mathcal{U}_V (\mathbf{M}, \mathbf{E}) = (S_V^{E2M} + S_V^{M2E})/2,$$

$$S_C = \mathcal{U}_C (\mathbf{M}, \mathbf{E}),$$

$$S = \mathcal{U} (\mathbf{M}, \mathbf{E}) = (S_V + S_T + S_C)/3,$$

TGLU –

$$\begin{split} \mathcal{S}_{T}^{G2G} &= \mathbf{t}_{E}^{G} \cdot \mathbf{t}_{M}^{G} \\ Q, K, V &= \mathbf{T}_{E}^{L} W_{tq}, \mathbf{T}_{M}^{L} W_{tk}, \mathbf{T}_{M}^{L} W_{tv}, \\ H_{t} &= \operatorname{softmax}(\frac{QK^{T}}{\sqrt{d_{T}}})V, \\ h_{t} &= \operatorname{LayerNorm}\left(\operatorname{MeanPooling}\left(H_{t}\right)\right), \\ \mathbf{S}_{T}^{G2L} &= \operatorname{FC}\left(\mathbf{t}_{E}^{G}\right) \cdot h_{t}, \end{split}$$

VDLU –

$$\mathcal{S}_{V}^{E2M} = \text{DUAL}_{E2M} \left(\mathbf{v}_{E}^{G}, \mathbf{v}_{M}^{G}, \mathbf{V}_{M}^{L} \right),$$

$$\mathcal{S}_{V}^{M2E} = \text{DUAL}_{M2E} \left(\mathbf{v}_{M}^{G}, \mathbf{v}_{E}^{G}, \mathbf{V}_{E}^{L} \right),$$

$$\text{DUAL}_{A2B} (\mathbf{v}_{A}, \mathbf{v}_{B}, \mathbf{V}_{B}) \text{ is as follows } -$$

$$\bar{h}_{p} = \text{MeanPooling} \left(\mathbf{V}_{B}^{L} \right),$$

$$h_{vc} = \text{FC} \left(\text{LayerNorm} \left(\bar{h}_{p} + \mathbf{v}_{A}^{G} \right) \right),$$

$$h_{vg} = \text{Tanh} \left(\text{FC} \left(h_{vc} \right) \right),$$

$$h_{v} = \text{LayerNorm} \left(h_{vg} * h_{vc} + \mathbf{v}_{B}^{G} \right),$$

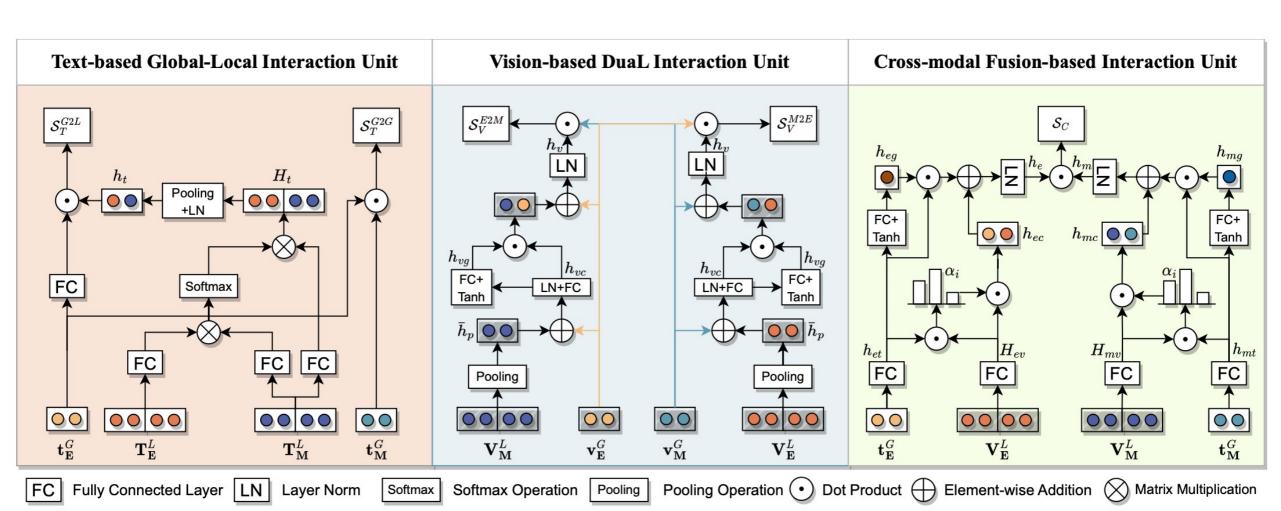
$$\mathcal{S}_{V}^{A2B} = h_{v} \cdot \mathbf{v}_{A}^{G}$$

CMFU –

$$h_{et}, h_{mt} = FC_{c1} \left(\mathbf{t}_{E}^{G} \right), FC_{c1} \left(\mathbf{t}_{M}^{G} \right),$$

$$H_{ev}, H_{mv} = FC_{c2} \left(\mathbf{V}_{E}^{L} \right), FC_{c2} \left(\mathbf{V}_{M}^{L} \right),$$

$$\alpha_{i} = \frac{\exp \left(h_{et} \cdot H_{ev}^{i} \right)}{\sum_{i}^{n+1} \exp \left(h_{et} \cdot H_{ev}^{i} \right)},$$


$$h_{ec} = \sum_{i}^{n+1} \alpha_{i} * H_{ev}^{i}, i \in [1, 2, ..., (n+1)]$$

$$h_{eg} = \text{Tanh} \left(FC_{c3} \left(h_{et} \right) \right),$$

$$h_{e} = \text{LayerNorm} \left(h_{eg} * h_{et} + h_{ec} \right)$$

$$\mathcal{S}_{C} = h_{e} \cdot h_{m}$$

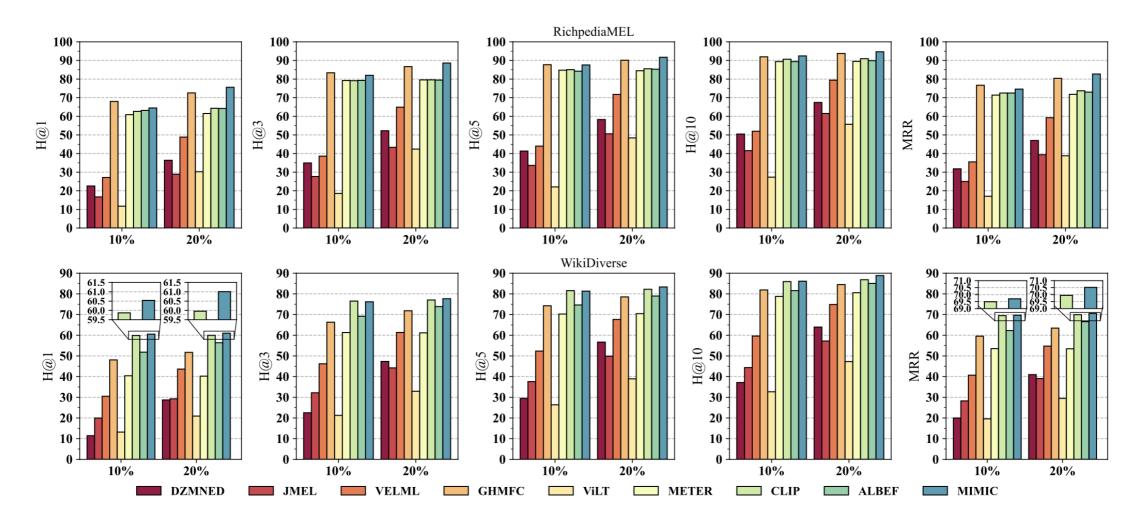
Full diagram.

Unit consistent loss function.

$$\mathcal{L}_{O} = -\log \frac{\exp \left(\mathcal{U}(\mathbf{M}, \mathbf{E})\right)}{\sum_{i} \exp \left(\mathcal{U}(\mathbf{M}, \mathbf{E}'_{i})\right)},$$

$$\mathcal{L}_{X} = -\log \frac{\exp \left(\mathcal{U}_{X}(\mathbf{M}, \mathbf{E})\right)}{\sum_{i} \exp \left(\mathcal{U}_{X}(\mathbf{M}, \mathbf{E}'_{i})\right)}, X \in \{T, V, C\},$$

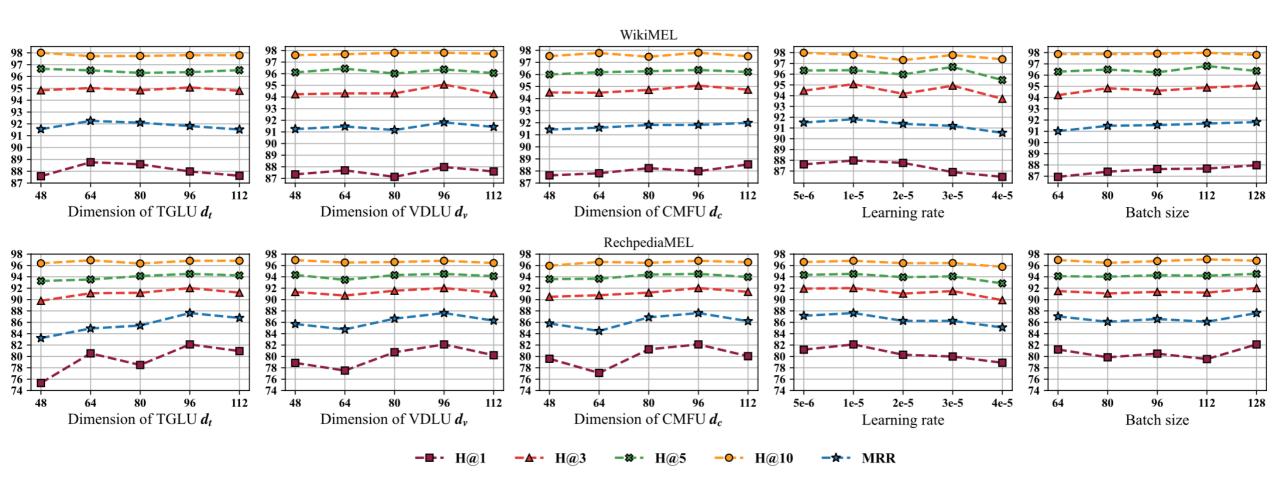
$$\mathcal{L} = \mathcal{L}_{O} + \underbrace{\mathcal{L}_{T} + \mathcal{L}_{V} + \mathcal{L}_{C}}_{\text{unit-consistent loss function}}.$$


Questions –

- **RQ1.** How does the proposed MIMIC perform compared with various baselines?
- **RQ2.** How do the generalization abilities of MIMIC and other baselines perform in low-resource scenarios?
- **RQ3.** How do the three proposed interaction units and unit-consistent objective function affect performance?
- **RQ4.** How does the model performance change with the parameters?

RQ1 (vs Baselines) –

Model		WikiMEL					RichpediaMEL				WikiDiverse				
	H@1↑	H@3↑	H@5↑	MRR†	MR↓	H@1↑	H@3↑	H@5†	MRR†	MR↓	H@1↑	H@3†	H@5↑	MRR†	MR↓
BLINK [38]	74.66	86.63	90.57	81.72	51.48	58.47	81.51	88.09	71.39	178.57	57.14	78.04	85.32	69.15	332.03
BERT [9]	74.82	86.79	90.47	81.78	51.23	59.55	81.12	87.16	71.67	278.08	55.77	75.73	83.11	67.38	373.96
RoBERTa [23]	73.75	85.85	89.80	80.86	31.02	61.34	81.56	87.15	72.80	218.16	59.46	78.54	85.08	70.52	405.22
DZMNED [26]	78.82	90.02	92.62	84.97	152.58	68.16	82.94	87.33	76.63	313.85	56.90	75.34	81.41	67.59	563.26
JMEL [1]	64.65	79.99	84.34	73.39	285.14	48.82	66.77	73.99	60.06	470.90	37.38	54.23	61.00	48.19	996.63
VELML [43]	76.62	88.75	91.96	83.42	102.72	67.71	84.57	89.17	77.19	332.85	54.56	74.43	81.15	66.13	463.25
GHMFC [35]	76.55	88.40	92.01	83.36	54.75	72.92	86.85	90.60	80.76	214.64	60.27	79.40	84.74	70.99	628.87
CLIP [29]	83.23	92.10	94.51	88.23	17.60	67.78	85.22	90.04	77.57	107.16	61.21	79.63	85.18	71.69	313.35
ViLT [18]	72.64	84.51	87.86	79.46	220.76	45.85	62.96	69.80	56.63	675.93	34.39	51.07	57.83	45.22	2421.49
ALBEF [21]	78.64	88.93	91.75	84.56	47.95	65.17	82.84	88.28	75.29	122.30	60.59	75.59	81.30	69.93	291.17
METER [11]	72.46	84.41	88.17	79.49	111.90	63.96	82.24	87.08	74.15	376.42	53.14	70.93	77.59	63.71	944.48
MIMIC	87.98*	95.07 [*]	96.37*	91.82*	11.02	81.02*	91.77 [*]	94.38*	86.95 [*]	55.11 [*]	63.51*	81.04	86.43*	73.44 *	227.08


RQ2 (Low resource setting, x% training data) –

RQ3 (Ablation Study) –

Model			Wil	ciMEL			RichpediaMEL						
1/10/401	H@1↑	H@3↑	H@5†	H@10†	H@20↑	MRR†	H@1↑	H@3↑	H@5↑	H@10†	H@20↑	MRR†	
MIMIC	87.98	95.07	96.37	97.80	98.73	91.82	81.02	91.77	94.38	96.69	98.04	86.95	
w/o \mathcal{L}_T	86.13	93.69	95.74	97.66	98.57	90.42	72.82	89.05	93.12	96.15	97.61	81.61	
w/o \mathcal{L}_V	86.71	94.43	96.25	98.01	98.80	90.94	78.72	90.23	93.66	96.04	97.61	85.15	
w/o \mathcal{L}_C	86.67	94.04	95.69	97.21	98.18	90.74	79.65	89.89	92.56	94.92	96.94	85.38	
w/o TGLU + \mathcal{L}_T	85.03	92.36	94.35	95.94	97.27	89.18	74.48	85.37	88.71	92.00	94.02	80.74	
w/o VDLU + \mathcal{L}_V	83.46	93.33	95.47	97.23	98.18	88.74	74.12	89.47	92.81	95.82	97.61	82.37	
w/o CMFU + \mathcal{L}_C	84.60	92.90	94.82	96.42	97.35	89.14	76.98	88.29	91.30	94.22	96.15	83.39	

RQ4 (Parameter Sensitivity) –

Example –

Mention	Ground Truth Entity	MIMIC	GHMFC	CLIP			
Official photo of Endeavour's final crew, taken in January 2010.		Top1 Q182508 Endeavour American Space Shuttle orbiter	Top1 Q96206891 Endeavour Crew Dragon space capsule manufactured by SpaceX	Top1 Q2151914 Endeavour british television series			
	Q182508	Top2 Q96206891 Endeavour Crew Dragon space capsule manufactured by SpaceX	Top2 Q182508 Endeavour American Space Shuttle orbiter	Top2 Q182508 Endeavour American Space Shuttle orbiter			
	Endeavour American Space Shuttle orbiter	Top3 Q96206891 Endeavour village in Saskatchewan, Canada	Top3 Q508018 Endeavour ship	Top3 Q96206891 Endeavour village in Saskatchewan, Canada			
	Q207	Top1 Q207 George W. Bush president of the United States from 2001 to 2009	Top1 Q247949 Bush British rock band	Top1 Q247949 Bush British rock band			
		British rock band	Top2 Q2743830 Bush family American family prominent in the fields of politics, sports and business	Top2 Q2743830 George Bush racing driver			
Bush with Iraqi Prime Minister Nouri al-Maliki in 2006.	George W. Bush president of the United States from 2001 to 2009	Top3 Q96206891 presidency of George W. Bush 43rd presidential administration and cabinet of the USA (2001-2009)	Top3 Q5537488 George Bush American biblical scholar	Top3 Q5537488 George Bush American biblical scholar and pastor (1796–1859)			