FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning

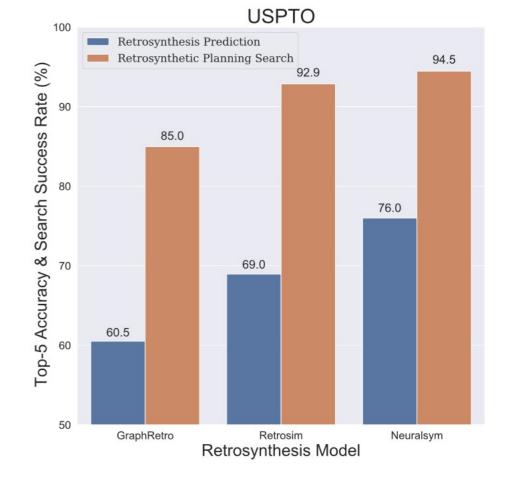
Songtao Liu¹ Zhengkai Tu² Minkai Xu³ Zuobai Zhang⁴⁵ Lu Lin¹ Rex Ying⁶ Jian Tang⁴⁷⁸ Peilin Zhao⁹ Dinghao Wu¹

1. Introduction

- Retrosynthesis.
- Current methods and Evaluation metrics.
- Novelty Exact Set-wise match!
- Also introduce a dataset (58099 routes) + metric.
- Beats SOTA.
- (Contribution) New Model architecture.
- (Contribution) Many new experiments.

2. Related Work

- Search Algorithms in Retrosynthetic Planning,
- Evaluation (efficiency vs quality).

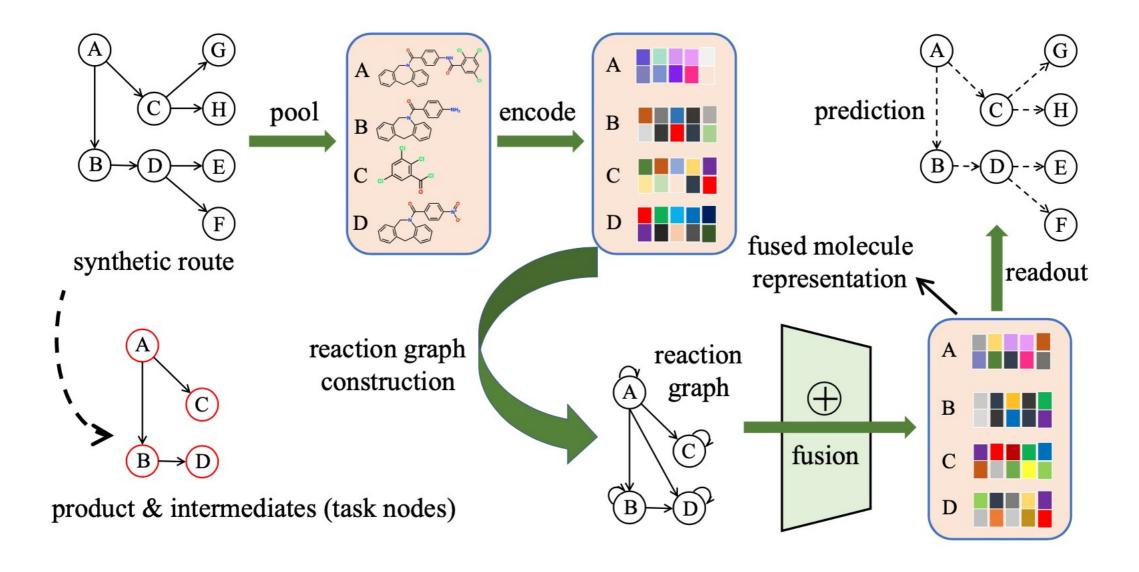


3. Notation

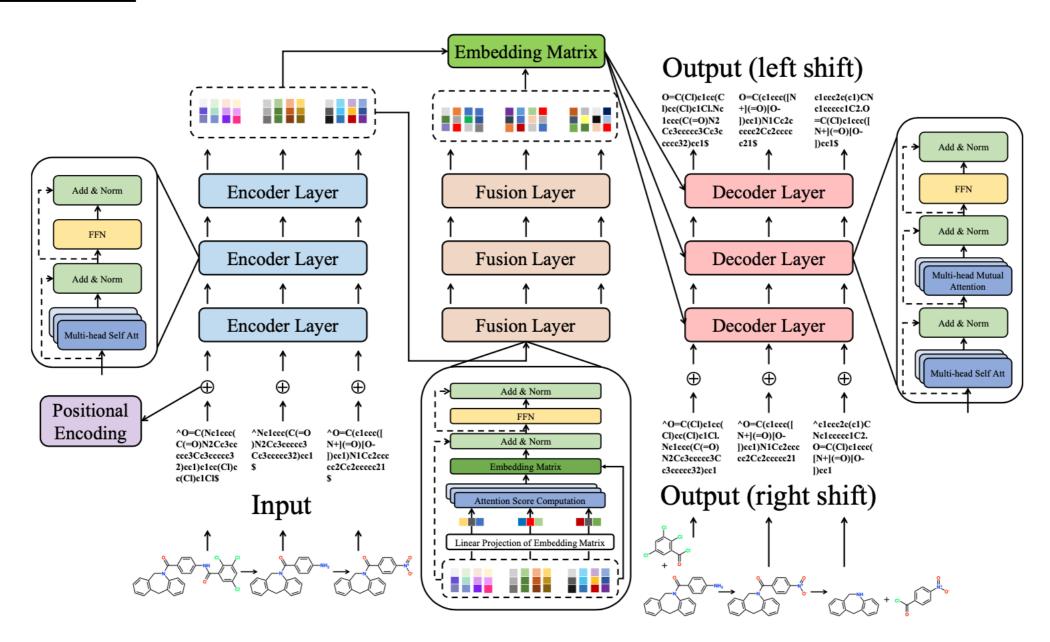
- Starting material \mathcal{M} (commercially purchasable molecules, ZINC),
- Synthetic Route $G = \{T, R, I, \tau\}$ "reaction graph",

- Single-step retrosynthesis, $T \rightarrow R$,
- Retrosynthetic planning, $T \rightarrow I \rightarrow R$.

4. FusionRetro.



4. FusionRetro.



4. FusionRetro

Loss –

Inference –

$\mathcal{L}(y,p) = -\sum_{i=1}^{n}\sum_{j=1}^{K}y_{ij}\log\left(p_{ij} ight)$

```
Algorithm 1 Inference given a target molecule
 1: Input: Target molecule T, starting material set S
 2: Initialize reactant set \mathcal{R} = \{\}, path set \mathcal{L} = \{\}
 3: Put the initial path [T] into \mathcal{L}
 4: while \mathcal{L} is not a empty set do
        Take an path l from \mathcal{L}
        Predict the reactants r_l for expansion given l
       for reactant r_l^{(i)} in r_l do
         if r_{\scriptscriptstyle I}^{(i)}\in\mathcal{S} then
 8:
             Put r_l^{(i)} into \mathcal R
           else
10:
              Generate a new path l' = l + [r_l^{(i)}]
11:
              Put l' into \mathcal{L}
12:
           end if
13:
        end for
15: end while
16: return predicted reactant set \mathcal{R}
```

Search Algorithm	Retro*				Retro*-0				Greedy DFS		
Souten Angorium	Top-1	Top-2	Top-3	Top-4	Top-5	Top-1	Top-2	Top-3	Top-4	Top-5	Top-1
Template-based											
Retrosim (Coley et al., 2017)	35.1	40.5	42.9	44.0	44.6	35.0	40.5	43.0	44.1	44.6	31.5
Neuralsym (Segler & Waller, 2017)	41.7	49.2	52.1	53.6	54.4	42.0	49.3	52.0	53.6	54.3	39.2
GLN (Dai et al., 2019)	39.6	48.9	52.7	54.6	55.7	39.5	48.7	52.6	54.5	55.6	38.0
Template-free											
G2Gs (Shi et al., 2020)	5.4	8.3	9.9	10.9	11.7	4.2	6.5	7.6	8.3	8.9	3.8
GraphRetro (Somnath et al., 2021)	15.3	19.5	21.0	21.9	22.4	15.3	19.5	21.0	21.9	22.2	14.4
Megan (Sacha et al., 2021)	18.8	29.7	37.2	42.6	45.9	19.5	28.0	33.2	36.4	38.5	32.9
Transformer (Karpov et al., 2019)	31.3	40.4	44.7	47.2	48.9	31.2	40.5	45.1	47.3	48.7	26.7
FusionRetro	37.5	45.0	48.2	50.0	50.9	37.5	45.0	48.3	50.2	51.2	33.8

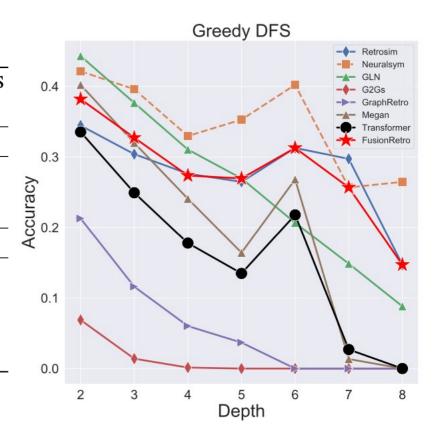
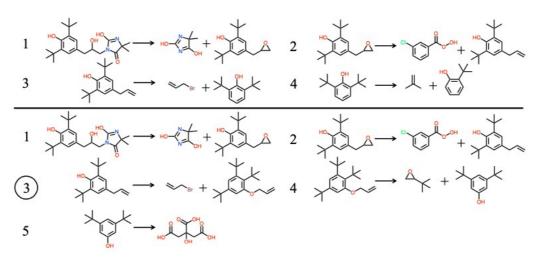


Table 2. Summary of retrosynthesis prediction results in terms of exact match accuracy (%).

Methods	Top-k accuracy %					
Wiellous	1	3	5	10		
G2Gs	16.5	27.8	33.1	40.4		
GraphRetro	48.3	58.4	60.5	62.4		
Transformer	55.8	70.3	74.8	78.9		
Retrosim	56.5	65.8	69.0	73.1		
Megan	59.5	73.9	77.9	81.7		
Neuralsym	63.0	73.3	76.0	78.6		
GLN	62.9	74.1	78.4	82.7		

6. Case Study



Graph and Geometric Learning lab, week 6

CONTEXT-ENRICHED MOLECULE REPRESENTATIONS IMPROVE FEW-SHOT DRUG DISCOVERY

Johannes Schimunek¹, Philipp Seidl¹, Lukas Friedrich², Daniel Kuhn², Friedrich Rippmann², Sepp Hochreiter¹, and Günter Klambauer¹

¹ ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria

schimunek@ml.jku.at

² Computational Chemistry & Biologics, Merck Healthcare, Darmstadt, Germany

1. Introduction

- Importance of Few-Shot learning.
- Inadequacy of Current methods.
- Novelty Associative Memories.
- (Contribution) New naïve baseline.
- (Contribution) SOTA performance.
- (Contribution) Add a new method of enriching representations.

2. Problem

• $y = g_w(m)$ where w represents the parameters of the network to be trained.

3. Model

Overview

context module:
$$m{m}' = f^{\mathrm{CM}}(m{m}, m{C})$$
 m symbolic or low-level repr. m symbolic or repr. m symbolic or low-level repr. m symbolic or low-

- Context Module (CM)
 - Hopfield Layer, (\(\mathbb{E} \) and \(\mathbb{C} \) can have different dimensions)

Hopfield(
$$\boldsymbol{\Xi}, \boldsymbol{C}$$
) := $(\boldsymbol{W}_{E}\boldsymbol{C})$ softmax $(\beta (\boldsymbol{W}_{C}\boldsymbol{C})^{T} (\boldsymbol{W}_{\Xi}\boldsymbol{\Xi}))$

Forward pass,

$$m' = \text{Hopfield}(m, C)$$
 and $X' = \text{Hopfield}(X, C)$

3. Model

- Cross Attention Module (CAM)
 - Forward pass, (this is exactly a normal attention module)

$$[\boldsymbol{m}'', \boldsymbol{X}''] = \operatorname{Hopfield}([\boldsymbol{m}', \boldsymbol{X}'], [\boldsymbol{m}', \boldsymbol{X}'])$$

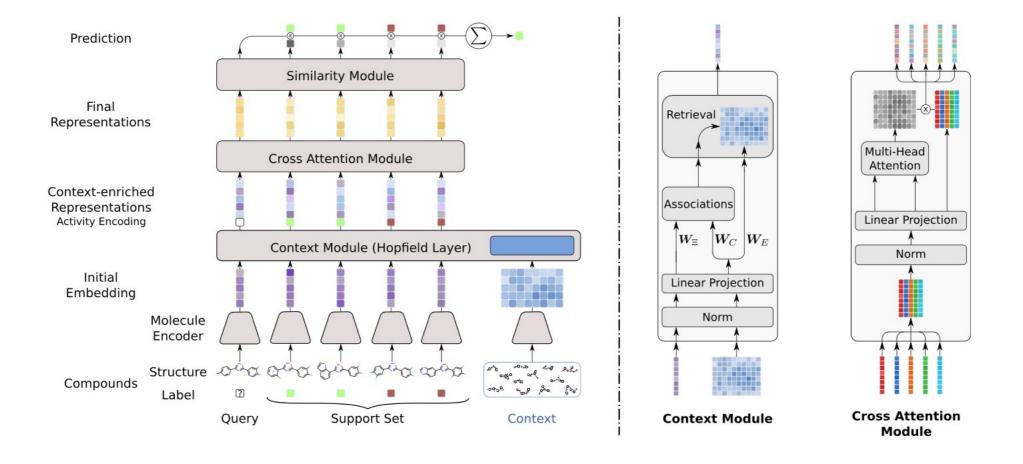
Similarity Module (SM)

$$\hat{y} = \sigma \left(au^{-1} rac{1}{N} \sum_{n=1}^N y_n' \; k(oldsymbol{m}'', oldsymbol{x}_n'')
ight)$$

Balancing strategy for labels

$$y_n' = egin{cases} N/(\sqrt{2N_A}) & \text{if } y_n = 1 \\ -N/(\sqrt{2N_I}) & \text{else} \end{cases}$$

3. Model



4. Related Work

 Nothing special but they have cited many papers from 2014-2018, but not many recent ones, weird.

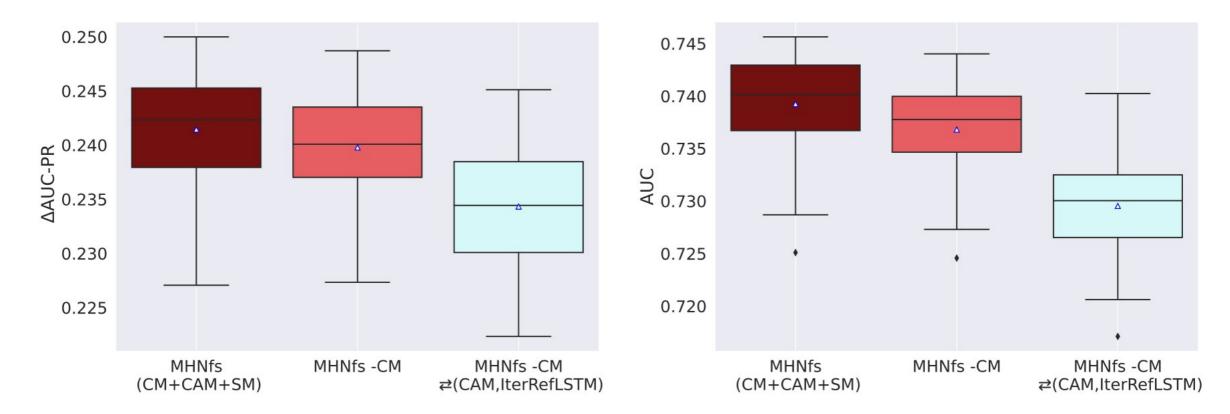
5. Experiments

Method	All [157]	Kin. [125]	Hydrol. [20]	Oxid.[7]
GNN-ST ^a (Stanley et al., 2021)	$.029 \pm .004$	$.027 \pm .004$	$.040 \pm .018$	$.020 \pm .016$
MAT ^a (Maziarka et al., 2020)	$.052\pm.005$	$.043 \pm .005$	$.095 \pm .019$	$.062 \pm .024$
Random Forest ^a (Breiman, 2001)	$.092 \pm .007$	$.081 \pm .009$	$.158\pm.028$	$.080 \pm .029$
GNN-MT ^a (Stanley et al., 2021)	$.093 \pm .006$	$.093 \pm .006$	$.108\pm.025$	$.053 \pm .018$
Similarity Search	$.118 \pm .008$	$.109 \pm .008$	$.166\pm.029$	$.097 \pm .033$
GNN-MAML ^a (Stanley et al., 2021)	$.159 \pm .009$	$.177 \pm .009$	$.105 \pm .024$	$.054\pm.028$
PAR (Wang et al., 2021)	$.164 \pm .008$	$.182 \pm .009$	$.109 \pm .020$	$.039 \pm .008$
Frequent Hitters	$.182\pm.010$	$.207\pm.009$	$.098\pm.009$	$.041 \pm .005$
ProtoNet ^a (Snell et al., 2017)	$.207\pm.008$	$.215 \pm .009$	$.209 \pm .030$	$.095 \pm .029$
Siamese Networks (Koch et al., 2015)	$.223 \pm .010$	$.241 \pm .010$	$.178\pm.026$	$.082 \pm .025$
IterRefLSTM (Altae-Tran et al., 2017)	$.234\pm.010$	$.251 \pm .010$	$.199 \pm .026$	$.098 \pm .027$
ADKF-IFT ^b (Chen et al., 2022)	$.234\pm.009$	$.248 \pm .020$	$.217 \pm .017$	$.106 \pm .008$
MHNfs (ours)	.241 ± .009	.259 ± .010	$.199 \pm .027$	$.096 \pm .019$

• 2 new baselines → Frequent Hitters and Similarity Search.

$$\hat{y} = 1/N \sum_{n=1}^{N} y_n \ k(\boldsymbol{m}, \boldsymbol{x}_n)$$

Ablations



Domain Shift test

Method	AUC	ΔAUC-PR
Similarity Search (baseline) IterRefLSTM (Altae-Tran et al., 2017) MHNfs (ours)	$.664 \pm .018$	$.061 \pm .008$ $.067 \pm .008$ $.073 \pm .008$

6. <u>Inference</u>

• This feels like making the notion of a knowledge graph very concrete, can be thought as if during inference/training the method has access to the full knowledge graph.