
Deep State Space Models
Karan Bania, Yash Bhisikar

S4 S5 S6

27th September 2024

[Video]

https://youtu.be/cAfrHICmDk0?si=wvEIwceb74p93Ral

Hype around
SSMs

Vision Mamba: https://arxiv.org/abs/2401.09417

Mamba on Language, DNA and audio data:
https://arxiv.org/abs/2312.00752

And many more...

https://arxiv.org/abs/2401.09417
https://arxiv.org/abs/2312.00752

Overview

● History: RNNs, Transformers and Problems (Yash)
● SSM Fundamentals & S4[1]: Efficiently Modeling Long Sequences with

Structured State Spaces (Karan)
● S5[2]: Simplified State Space Layers for Sequence Modeling (Yash, 11th Oct)
● Mamba[3]: Linear Time Sequence Modeling with Selective State Spaces

(Karan)
● Event-SSM[4]: Scalable Event-by-event processing of Neuromorphic sensory

signals with Deep State-Space Models (Yash, 11th Oct)

Most images have been taken from [1], [2] and [3] and this DeepMind talk in UCL.
(psst, We got to work with Mamba’s CUDA kernels!)

https://arxiv.org/pdf/2111.00396
https://arxiv.org/pdf/2208.04933
https://arxiv.org/pdf/2312.00752
https://arxiv.org/abs/2404.18508
https://arxiv.org/pdf/2111.00396
https://arxiv.org/pdf/2208.04933
https://arxiv.org/pdf/2312.00752
https://docs.google.com/presentation/d/1ynJ52yPDCgspsG9-ep2fmwAWGVoPqdtewP2gmGzhOco/edit?resourcekey=0-PEwZMHDipMXDEWzqvTQzQw#slide=id.g1f4b8bfed30_0_0

Preface

● These models and many slides have a lot of math!
● They also involve a lot of CS fundamentals, and out-of-the-box

programming.
● We think that regardless of Machine Learning these papers should also be

treated as amazing thought experiments, it’s definitely not the case that
these models are wack at ML xD; it’s just that they fully deserve all the hype
around them!

● These are truly revolutionary architectures, let’s start with “Is attention is all
we need?”

History: RNNs & LSTMs

● BP was adopted (as BPTT) to train them
● Early expressivity results made RNN very

desirable architecture
● Allowed to condition on an arbitrary length

sequence
● Exhibits optimization issues (vanishing/exploding

gradient) and scalability issues (required
sequential computation)

~1925 Ising-Models (untrained RNNs)

~’72-’81 Hopfield networks (trained RNNs)

~’80-’90 Amari, Rumelhart et al., Werbos,
etc. - Back-propagation and BPTT are
introduced/popularized

~’90-’20s Expressivity results (Hava
Siegelmann & Sontag in 1991): RNNs are
Turing-Complete

~’92-’24 Bengio et al., Hochreiter &
Schmidhuber: RNNs are hard to train
(vanishing/exploding gradients problems)

~’01-’10 Echo State Networks / LSM as an
answer to the trainability problem

1997 Hochreiter & Schmidhuber: LSTMs

2014 Graves shows LSTMs to work at “scale”
 Sutskever et al. Seq2Seq Model
 Chung et al. 2014, GRU

History(?): Transformers

History(?): Transformers

SSM Fundamentals and S4

● Before we move forward, two branches with “SSMs”

LRU Griffin / Hawk

S4 S5 / Mamba

Much More
DL-Like.

Much More
Mathematical.

This
presentation
✅

SSM Fundamentals and S4
2020 HiPPO is introduced

2021 Linear State Space Layer (LSSL)

2022 Structured State Space Model (S4)

2022 Diagonal Structured Space Models
(S4D)

2022 SGConv

2023 Mega

2023 Linear Recurrence Units (LRU)

2023 RWKV

2023 RetNet

2023 Mamba

2022 Hungry Hungry Hippos (H3)

2022 Simplified State Space Models (S5)

2022 SaShiMi

2022 Liquid State Space Models

2023 Vision-Mamba

2023 2-D SSMs

2022 Hyena

Basically fixed 2 important problems with RNNs,

● Stable training,
● Scalable training.

SSM Fundamentals and S4

● Key ideas:
○ Continuous time interpretation,
○ Specific initialization,
○ Discretization + Diagonalization.

● Continuous time interpretation,
○ Original formulation of state-space models.

SSM Fundamentals and S4

● Specific initialization,
○ More theory, this is from echo networks.

○ This initialization helped get from 60% to 98% on MNIST!

SSM Fundamentals and S4

● Discretization and Diagonalization.
Clearly, our input is not continuous time (speech, image-pixels, etc.), so we
need to discretize the system, this lends us

SSM Fundamentals and S4

● Discretization and Diagonalization.
Why diagonalize in the first place? Very important question!
We will answer this but first let’s see the how-to (briefly).

● For arbitrary Ā, D will be complex.

SSM Fundamentals and S4

● Now, how is this stable?
○ Because Ā is diagonal, we can directly access it’s spectrum, and thus

have control on recurrence blow-up. (Just parametrize such that λ <= 1,
used commonly - where 𝛷 is learnable)

○ Also, recurrence is linear.
● How / why is it scalable?

○ Associative Scans[2] (or interpret as convolution).

https://arxiv.org/abs/2208.04933

SSM Fundamentals and S4

● How / why is it scalable?
○ Associative Scans[2] (or interpret as convolution).

○ +1 to diagonalization, reduces FLOPs, O(H2) to O(H)!

https://arxiv.org/abs/2208.04933

SSM Fundamentals and S4

● Then why LRU?

[2111.00396]
[The Annotated S4]

[GitHub]

https://arxiv.org/abs/2111.00396
https://srush.github.io/annotated-s4/
https://github.com/state-spaces/s4

SSM Fundamentals and S4

● Now the S4 paper is just connecting all the dots and making it a learnable
system.
○ Continuous time interpretation ✅,
○ HiPPO initialization ❌ (almost),
○ Discretization ✅,
○ Training = Convolutional interpretation ✅,
○ Diagonalization (Motivated through computational efficiency) ✅,
○ + Extra stuff for an actual fast implementation. (Really fast!)

SSM Fundamentals and S4 [the complicated stuff]

● Actual computation and NPLR / DPLR matrices.
○ First, why Normal? Because we perform conjugation.
○ Second, why Low Rank? To approximate HiPPO matrices.

● However, this would not be enough, powering up a sum is still as
problematic as powering up any other matrix => slow implementation.

● Naïvely, this needs O(N2L) computations to just compute the kernel, however
they describe an algorithm which does the following!

SSM Fundamentals and S4 [the really complicated stuff]

SSM Fundamentals and S4

● Key takeaways -

SSM Fundamentals and S4

● Architecture (one layer) -

S4
block

Position-
wise

Linear
(FFN)

xH
xH xH

SSM Fundamentals and S4

󰷹 Results,

SSM Fundamentals and S4

󰷹 Results,

[2208.04933]
[GitHub]

!11th Oct!

https://arxiv.org/abs/2208.04933
https://github.com/lindermanlab/S5

[2312.00752]
[GitHub]

https://arxiv.org/abs/2312.00752
https://github.com/state-spaces/mamba

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● S6 borrows a lot of parts from S4 + an important linear-time-variant

extension.
○ Drops Complex analysis ❌
○ Drops HiPPO completely ❌
○ Linear Time Invariance ❌

● The paper has 3 major contributions:
○ The LTI-drop (selection mechanism),
○ Hardware-aware algorithm,
○ Scaling.

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● Selection:

○ Why? Very closely related LSTM-gating, select data in an
input-dependent manner.

○ Selectivity as the goal of language sequence modelling, effectiveness -
efficiency tradeoff.

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● Selection:

○ They make a very strong claim. It means

cannot learn the induction heads task for any A, B, C, Δ. Though they
have not proved this.

○ Their formulation was inspired from hypernetworks, gating,
data-dependent transforms research BUT is not an GLU activation!

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● Selection:

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

Mamba: Linear Time Sequence Modeling with Selective
State Spaces [the somewhat complicated part]
● The algorithm is theoretically faster than S4, for small state dimensions, but

has a major problem.
○ Why faster than S4? Convolution is O(B*L*D*log(L)) (L*log(L) because

FFT), and Mamba conv is O(B*L*D*N).
○ However, a naïve implementation would materialize the hidden state of

dimensions B*L*D*N in GPU HBM (High Bandwidth Memory).
○ Basically, CUDA kernels from Nvidia are not sufficient, so they write their

own CUDA kernels to have kernel fusion.
○ This seems like fancy terms but are really easy concepts in reality. (easy

to think of, not easy to implement!)

https://www.youtube.com/watch?v=PBdpNhaBxfc

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● The paper has 3 major contributions:

○ The LTI-drop (selection mechanism), ✅
○ Hardware-aware algorithm, ✅
○ Scaling ❓

● Finally, this is the first paper on this branch of SSMs that scales their model
to a few billion parameters to test on Language Modelling, and other real
world tasks.

● Interestingly, they got rejected from ICLR’24 because at the time of
submission they did not include LRA tasks.

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● An important theorem.

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
● Some more discussion on the arch.

○ Variable Spacing / Filtering Context,
○ Boundary Resetting,
○ Interpretation of A, B, C and Δ.

● Major takeaway, Δ dictates a lot!

Resets context, massive focus on input.

Ignores input, massive focus on context.

󰷹 Results (synthetic),

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

󰷹 Results (scaling laws),

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

󰷹 Results
(language
 modelling),

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

Thank you! Questions?

