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https://youtu.be/cAfrHICmDk0?si=wvEIwceb74p93Ral

Hype around

SSMs

Albert Gu
< @_albertgu

Quadratic attention has been indispensable for information-dense

modalities such as language... until now.

Announcing Mamba: a new SSM arch. that has linear-time scaling, ultra
long context, and most importantly--outperforms Transformers

everywhere we've tried.
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We present Griffin: A hybrid model mixing a gated line
local attention. This combination is extremely effectiv|
the efficient benefits of linear RNNs and the expressiy
transformers. Scaled up to 14B!

ay to efficient architectures:

> StripedHyena-7B, open source models offering a

glimpse into a world beyond Transformers
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(b) Speed Comparison

ision Mamba: https://arxiv.org/abs/2401.09417

, we're collaborating with
and releasing a Mamba 38 model trained on 600B tokens 31
on the SlimPajama dataset (Mamba-3B-SlimPJ). It's among the

ptogetherc

(¢) GPU Memory Comparison

Scaling Laws on the Human Genome (HG38)

ompute and

Mamba

—— HyenaDNA

—— Transformer++

Sequence Length

Mamba on Language, DNA and audio data:

https://arxiv.or

And many more...

abs/2312.00752

strongest 3B models, matching the performance of strong Transformers E 3.0
(BTLM-3B). s
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https://arxiv.org/abs/2401.09417
https://arxiv.org/abs/2312.00752

Overview

e History: RNNs, Transformers and Problems (Yash)

e SSM Fundamentals & S41: Efficiently Modeling Long Sequences with
Structured State Spaces (Karan)

e S54: Simplified State Space Layers for Sequence Modeling (Yash, 11th Oct)

e Mambal: Linear Time Sequence Modeling with Selective State Spaces
(Karan)

e Event-SSM¥: Scalable Event-by-event processing of Neuromorphic sensory
signals with Deep State-Space Models (Yash, 11th Oct)

Most images have been taken from [1], [2] and [3] and this DeepMind talk in UCL.
(psst, We got to work with Mamba’s CUDA kernels!)


https://arxiv.org/pdf/2111.00396
https://arxiv.org/pdf/2208.04933
https://arxiv.org/pdf/2312.00752
https://arxiv.org/abs/2404.18508
https://arxiv.org/pdf/2111.00396
https://arxiv.org/pdf/2208.04933
https://arxiv.org/pdf/2312.00752
https://docs.google.com/presentation/d/1ynJ52yPDCgspsG9-ep2fmwAWGVoPqdtewP2gmGzhOco/edit?resourcekey=0-PEwZMHDipMXDEWzqvTQzQw#slide=id.g1f4b8bfed30_0_0

Preface

e These models and many slides have a lot of math!

e They also involve a lot of CS fundamentals, and out-of-the-box
programming.

e \We think that regardless of Machine Learning these papers should also be
treated as amazing thought experiments, it's definitely not the case that
these models are wack at ML xD; it’s just that they fully deserve all the hype
around them!

e These are truly revolutionary architectures, let’s start with “Is attention is all
we need?”



History: RNNs & LSTMs

~1925 Ising-Models (untrained RNNs)
~'72-'81 Hopfield networks (trained RNNs)

~'80-"90 Amari, Rumelhart et al., Werbos,
etc. - Back-propagation and BPTT are
introduced/popularized

~'90-'20s Expressivity results (Hava
Siegelmann & Sontag in 1991): RNNs are
Turing-Complete

~'92-'24 Bengio et al., Hochreiter &
Schmidhuber: RNNs are hard to train
(vanishing/exploding gradients problems)

~'01-"10 Echo State Networks / LSM as an
answer to the trainability problem

1997 Hochreiter & Schmidhuber: LSTMs

2014 Graves shows LSTMs to work at “scale”

Sutskever et al. Seq2Seq Model
Chung et al. 2014, GRU

Y

Xe-1 Xe Xe+1

o« BP was adopted (as BPTT) to train them

o Early expressivity results made RNN very
desirable architecture

¢ Allowed to condition on an arbitrary length
sequence

o Exhibits optimization issues (vanishing/exploding
gradient) and scalability issues (required
sequential computation)



History(?): Transformers
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History(?): Transformers
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SSM Fundamentals and S4

e Before we move forward, two branches with “SSMs”

Much More
DL-Like.

@ mmm) LRU EEE)  Griffin / Hawk

Much More
Mathematical.

mmm) sS4 EEE) S5/Mamba

Q This
D presentation




SSM Fundamentals and S4

2020 HiPPO is introduced
2021 Linear State Space Layer (LSSL)

2022 Structured State Space Model (S4)

2022 SaShiMi
2022 Hyena

2022 Diagonal Structured Space Models
(S4D)

2022 Liquid State Space Models
2022 Simplified State Space Models (S5)
2022 SGConv

2022 Hungry Hungry Hippos (H3)
2023 Mega

2023 Linear Recurrence Units (LRU)
2023 RWKV

2023 RetNet
2023 2-D SSMs
2023 Mamba

2023 Vision-Mamba

Basically fixed 2 important problems with RNNs,

training,

e Scalable training.

X1

x =Ax + Bu
y =Cx+Du

Continuous
State Space

Long-Range
Dependencies

x =Ax + Bu
y =Cx+Du

Wovaniim

Fast Discrete Representations




SSM Fundamentals and S4

e Key ideas:
o Continuous time interpretation,
o Specific initialization,
o Discretization + Diagonalization.

e Continuous time interpretation,
o Original formulation of state-space models.

z'(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t)



SSM Fundamentals and S4

e Specific initialization,
o More theory, this is from echo networks.

(2n+1D)Y2 2k +1)Y2 ifn>k
(HiPPO Matrix) Ank=—<n+1 ifn==%k
0 if n <k

\

o This initialization helped get from 60% to 98% on MNIST!



SSM Fundamentals and S4

e Discretization and Diagonalization.
Clearly, our input is not continuous time (speech, image-pixels, etc.), so we
need to discretize the system, this lends us

Ty =Z£Ek_1 —|—§’U,k A= (I— A/2 . A)_I(I+A/2 A)
yr, = Czy, B=(I-A/2-A)AB C=0C.

e(n) e(n) e(?)

| ‘ ‘
Hm | | .

t
kT (e+1)T kT (=0T kT (kDT

’ » ¢

Forward Difference Backward Difference Bilinear Transform



SSM Fundamentals and S4

e Discretization and Diagonalization.
Why diagonalize in the first place? Very important question!

We will answer this but first let's see the how-to (briefly).
T = /ixk_l + Buk
A=PDP!
zr = PDP 'x,_1 + Buyg
P 'z, =DP 'zr_1 + P 'Buy

ZTr = DZp_1 + Bug

e For arbitrary A, D will be complex.



SSM Fundamentals and S4

e Now, how is this ?

o Because A is diagonal, we can directly access it's spectrum, and thus
have control on recurrence blow-up. (Just parametrize such that A <=1,
used commonly - A = —e? where @ is learnable)

o Also, recurrence is linear.

e How /whyis it scalable?
o Associative Scans? (or interpret as convolution).

Arrow computation:
(4, Bug) ~_ (a,b) © (@', b)) = (@'a,a’b+ b')
P (A%, ABuy + Bu,)
(A9 Bul) \
(A*, A’Buy + A’Bu, + ABu, + Bu,)
(A7 Bu’z) \ 2
(A%, ABu, + Bu,)

(A, Bus)


https://arxiv.org/abs/2208.04933

SSM Fundamentals and S4

e How/whyis it scalable?
o Associative Scans!? (or interpret as convolution).

Tog = E’u,o r1 = EUO + E’U,l To = ZQE’U,O + E’U;l + E’U,Q
Yo = CBUO Y1 = CABUO + CBUl Y2 = azﬁ’ll,o + C'ABu1 + C_BUQ

Y = C_AkE’U,o + ﬁk_lﬁul +.--+CABuy_1 + CBug
y =K *u.

—

K cRL =K (4,B,C) = (CA E) .y =(CB,CAB, .. ,CA"'B).
1€

o +1 to diagonalization, reduces FLOPs, O(H?) to O(H)!


https://arxiv.org/abs/2208.04933

SSM Fundamentals and S4

e Then why LRU?

State Space Models

But...

ful ]
%= Ax+Bu
y =Cx+Du
Continuous
State Space

1.0 0
120
1 3 3

A=

Long-Range
Dependencies

{HHHH A

20

x=Ax+Bu ¢

e T y=K*u
y =Cx+Du

Fast Discrete Representations

e Many variants of SSMs have been proposed (S4, S4D, H3, Mamba ..)

e Multiple choices for discretization (e.g. bilinear, ZOH)

e Unclear how changes to the architecture interacts with parametrization of

SSM

e |s the continuous time interpretation necessary

How can we disentangle what is important?




Efficiently Modeling Long Sequences with Structured State Spaces

Albert Gu, Karan Goel, and Christopher Ré
Department of Computer Science, Stanford University

{albertgu,krng}@stanford.edu, chrismre@cs.stanford.edu

[2111.00396]
[The Annotated S4]
[GitHub]



https://arxiv.org/abs/2111.00396
https://srush.github.io/annotated-s4/
https://github.com/state-spaces/s4

SSM Fundamentals and S4

e Now the S4 paper is just connecting all the dots and making it a learnable
system.
o Continuous time interpretation ,
HiPPO initialization )€ (almost),
Discretization [¥4,
Training = Convolutional interpretation (%4,
Diagonalization (Motivated through computational efficiency) (%4,
+ Extra stuff for an actual fast implementation. (Really fast!)

O O O O O



SSM Fundamentals and S4 [the complicated stuff]

e Actual computation and NPLR / DPLR matrices.
o First, why Normal? Because we perform conjugation.
o Second, why Low Rank? To approximate HiPPO matrices.
e However, this would not be enough, powering up a sum is still as
problematic as powering up any other matrix => slow implementation.
e Naively, this needs O(N?L) computations to just compute the kernel, however
they describe an algorithm which does the following!

Theorem 3 (S4 Convolution). Given any step size A, computing the SSM convolution filter K can be
reduced to 4 Cauchy multiplies, requiring only O(N + L) operations and O(N + L) space.



SSM Fundamentals and S4 [the really complicated stuff]

Algorithm 1 S4 CONVOLUTION KERNEL (SKETCH)

Input: 5S4 parameters A, P,Q,B,C € (Bl and step size A
Output: SSM convolution kernel K = K1(A,B,C) for A = A — PQ* (equation (5))

1: C + (I — ZL>* C > Truncate SSM generating function (SSMGF) to length L
koo(w) ko1 (w) ~ ol (21-w -

2. [kw 0 kel e CQq| (22-4) BP > Black-box Cauchy kernel

3 K(w) « H% (koo (w) — ko1 (w) (1 + K11 (w)) " tk1o(w)] > Woodbury Identity

4 K={KWw):w= exp(2mi£)} > Evaluate SSMGF at all roots of unity w € 2,

. K «+ iFFT(K) > Inverse Fourier Transform

ot




SSM Fundamentals and S4

o Key takeaways -

Convolution®  Recurrence Attention S4
Parameters LH H? H? H?
Training LH(B+ H) BLH? B(L*H+ LH?) BH(H+ L)+ BLH
Space BLH BLH B(L? + HL) BLH
Parallel Yes No Yes Yes
Inference LH? H? L’H + H?L H?




SSM Fundamentals and S4

Architecture (one layer) -

xH

=) S4
block

xH

Position-
wise
Linear
(FFN)

xH



SSM Fundamentals and S4

=) Results,

Table 4: (Long Range Arena) (Top) Original Transformer variants in LRA. Full results in Appendix D.2. (Bottom)
Other models reported in the literature. Please read Appendix D.5 before citing this table.

MODEL ListTOps TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AvaG
Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Reformer 37.27 56.10  53.40 38.07 68.50 X 50.56
BigBird 36.05 64.02  59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 53.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer 37.15 65.52  79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57  79.29 47.38 77.72 X 59.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09




SSM Fundamentals and S4

Table 2: Deep SSMs: The S4 parameterization with Algorithm 1  Table 3: Benchmarks vs. efficient Transformers
is asymptotically more efficient than the LSSL.

LENGTH 1024 LENGTH 4096

TRAINING STEP (MS) MEMORY ALLoc. (MB) Speed Mem. Speed Mem.
Dim. 128 256 512 128 256 512 T DU 1.5t Tose 15¢
LSSL 9.32 20.6 140.7 222.1 1685 13140 Performer 1.23x  0.43x  3.79x  0.086x
S4 4.77  3.07 4.75 5.3 126  33.5 Linear Trans. 1.58x 0.37x 5.35x 0.067x

Ratio 1.9x 6.7x 29.6x 42.0x 133x 392X S4 1.58x 0.43x  5.19x  0.091x




SIMPLIFIED STATE SPACE LAYERS FOR SEQUENCE
MODELING

Jimmy T.H. Smith™ 12, Andllv1\'%h' 2 @ctllmermanz’ .
“Equal contribution. l L

!nstitute for Computational and Mathematical Engineering, Stanford University.
2Wu Tsai Neurosciences Institute, Stanford University.

3Department of Statistics, Stanford University.

{jsmithl4, awarring, scott.linderman}@stanford.edu.

[2208.04933]
[GitHub]



https://arxiv.org/abs/2208.04933
https://github.com/lindermanlab/S5

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu*' and Tri Dao*’

'Machine Learning Department, Carnegie Mellon University

2Department of Computer Science, Princeton University
agu@cs.cmu.edu, tri@tridao.me

[2312.00752]
[GitHub]



https://arxiv.org/abs/2312.00752
https://github.com/state-spaces/mamba

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e S6 borrows a lot of parts from S4 + an important linear-time-variant
extension.
o Drops Complex analysis
o Drops HiPPO completely X
o Linear Time Invariance )X
e The paper has 3 major contributions:
o The LTI-drop (selection mechanism),
o Hardware-aware algorithm,
o Scaling.



Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e Selection:
o Why? Very closely related LSTM-gating, select data in an
input-dependent manner.
o Selectivity as the goal of language sequence modelling, effectiveness -
efficiency tradeoff.

Induction Heads

1 I°] | Bewisl JoEs




Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e Selection:
o They make a very strong claim. It means

Ty =Z£Ek_1 —I—Euk A= (I— A/2 . A)_I(I+A/2 A)
yr, = Czy, B=(I-A/2-A)AB C=0C.

cannot learn the induction heads task for any A, B, C, A. Though they
have not proved this.

o Their formulation was inspired from hypernetworks, gating,
data-dependent transforms research BUT is not an GLU activation!




Mamba: Linear Time Sequence Modeling with Selective

State Spaces

e Selection:

Table 11: (Induction heads.) Models are trained on sequence length 28 = 256, and tested on various sequence lengths of 2° = 64 up to

220

= 1048576. v denotes perfect generalization accuracy, while X denotes out of memory.

MoDEL PArRAMS TEST ACCURACY (%) AT SEQUENCE LENGTH

26 27 28 29 910 911 912 213 gld 915 916 917 518 519 520
MHA-Abs 137K v 99. 100.0 58.6 26.6 188 9.8 109 7.8 X X X X X X
MHA-RoPE 137K v v 100.0 836 313 184 8.6 9.0 5.5 X X X X X X
MHA-xPos 137K v v 100.0 99.6 67.6 254 7.0 9.0 7.8 X X X X X X
H3 153K v v 100.0 809 395 23.8 148 8.2 59 6.6 8.2 4.7 8.2 6.3 7.4
Hyena 69M* 97.7 1000 Vv 44.1 125 6.6 5.1 7.0 5.9 6.6 6.6 5.9 6.3 9.8
Mamba 74K v v 1000 Vv v v v v v v v v v v v

* Most of the parameters are in learnable positional encodings.



Mamba: Linear Time Sequence Modeling with Selective
State Spaces

Algorithm 1 SSM (54) Algorithm 2 SSM + Selection (S6)
Input: x:(B,L,D) Input: x:(B,L,D)
Output: y: (B,L,D) Output: y: (B,L,D)
1: A: (D,N) « Parameter 1: A: (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B: (D,N) « Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C: (B,L,N) « sc(x)
4: A : (D) « zp(Parameter) 4: A: (B,L,D) « 7a(Parameter+sa(x))
5: A B: (D,N) « discretize(A, A, B) 5: A B: (B,L,D,N) « discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A, B,C)(x)

> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: return y 7: return y




Mamba: Linear Time Sequence Modeling with Selective
State Spaces [the somewhat complicated part]

e The algorithm is theoretically faster than S4, for small state dimensions,

o Why faster than S4? Convolution is O(B*L*D*log(L)) (L*log(L) because
FFT), and Mamba conv is O(B*L*D*N).

o However, a naive implementation would materialize the hidden state of
dimensions B*L*D*N in GPU HBM (High Bandwidth Memory).

o Basically, CUDA kernels from Nvidia are not sufficient, so they write their
own CUDA kernels to have kernel fusion.

o This seems like fancy terms but are really easy concepts in reality. (easy
to think of, not easy to implement!)



https://www.youtube.com/watch?v=PBdpNhaBxfc

Mamba: Linear Time Sequence Modeling with Selective
State Spaces
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Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e The paper has 3 major contributions:

o The LTI-drop (selection mechanism),
o Hardware-aware algorithm,
o Scaling ?

e Finally, this is the first paper on this branch of SSMs that scales their model
to a few billion parameters to test on Language Modelling, and other real
world tasks.

e Interestingly, they got rejected from ICLR’24 because at the time of
submission they did not include LRA tasks.



Mamba: Linear Time Sequence Modeling with Selective

State Spaces

N

A
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Conv Conv
|
A /| N\ A
L | l |
H3 ® Gated MLP — Mamba

Linear
projection

Sequence
transformation

Nonlinearity
(activation or
multiplication)



Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e An important theorem.

Theorem 1. When N = 1, A = -1, B = 1,sp = Linear(x), and 7y = softplus, then the selective SSM recurrence (Algorithm 2)
takes the form
g: = o(Linear(x;))

5
h = (1=9g:1)hi—1 + gex;. ©®



Mamba: Linear Time Sequence Modeling with Selective
State Spaces

e Some more discussion on the arch.
o Variable Spacing / Filtering Context,
o Boundary Resetting,
o Interpretation of A, B, C and A.

e Major takeaway, A dictates a lot!

A —>» OO Resets context, massive focus on input.

A — (0 Ilgnores input, massive focus on context.



Mamba: Linear Time Sequence Modeling with Selective

State Spaces

=) Results (synthetic),

MODEL  ARCH. LAYER Acc.

S4 No gate 5S4 18.3
= No gate S6 97.0
H3 H3 S4 57.0
Hyena  H3 Hyena 30.1
= H3 S6 99.7
- Mamba  S4 56.4
- Mamba Hyena 284
Mamba Mamba S6 99.8

Table 1: (Selective Copying.)
Accuracy for combinations of architectures
and inner sequence layers.

Induction Heads Extrapolation

1.0
0.8 == MHA-Absolute
MHA-RoPE
5- 0.6 - MHA-xPos
L = H3
§ did == Hyena
< == Mamba
= Random
0.2 7 N Train Length
— .
0.0
LB LAY | v LI L AL | v LA LR | LAY |
102 10° 104 10

Test Sequence Length

Table 2: (Induction Heads.) Models are trained on sequence length 28
256, and tested on increasing sequence lengths of 2¢ = 64 up to 2%°

1048576. Full numbers in Table 11.



Perplexity (log scale)

Mamba: Linear Time Sequence Modeling with Selective
State Spaces

=) Results (scaling laws),

Scaling Laws on The Pile (Sequence Length 2048) Scaling Laws on The Pile (Sequence Length 8192)

2x10' 2x10"
Hyena Hyena
RWKV E RWKV
Transformer S Transformer
- RetNet g -~ RetNet
= H3++ o = H3++
«=s==_ Transformer++ : \ === Transformer++
10" 4 == Mamba % 10" 4 = Mamba
5
a
6x10° 6x10°

— T T ————T T T —— T
10" 102 10" 102

FLOPs (log scale) FLOPs (log scale)



Mamba: Linear Time Sequence Modeling with Selective

State Spaces

=) Results
(language
modelling),

MobEL TokeN. PILE LAMBADA LAMBADA HeiraSwac PIQA  Arc-E  ArRc-C WINOGRANDE  AVERAGE
PPL|  PPL| Acc T Acc T AccT aAccT  accT  acct acc T
Hybrid H3-130M  GPT2 — 89.48 25.77 31.7 64.2 444 24.2 50.6 40.1
Pythia-160M NeoX 29.64  38.10 33.0 30.2 61.4 43.2 24.1 519 40.6
Mamba-130M NeoX 10.56 16.07 44.3 35.3 64.5 48.0 24.3 51.9 44.7
Hybrid H3-360M  GPT2 — 12.58 48.0 41.5 68.1 514 24.7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 — 7.50 57.2 48.9 71.1 56.2 25.9 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT = 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 - 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 73.3 65.6 32.3 61.4 58.0
OPT-2.7B OPT - 5.12 63.6 60.6 74.8 60.8 31.3 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3
GPT-J-6B GPT2 - 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT - 4.25 67.7 67.2 76.3 65.6 34.9 65.5 62.9
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 61.7
RWKV-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5




Thank you! Questions?



