BI-LEVEL CONTRASTIVE LEARNING FOR KNOWL-EDGE ENHANCED MOLECULE REPRESENTATIONS

Pengcheng Jiang* Cao Xiao[†] Tianfan Fu* Jimeng Sun*
*University of Illinois at Urbana Champaign

†GE Healthcare

†danicaxiao@gmail.com

ICLR 2024 under review

Introduction –

- GNNs for representation learning + molecular graph as i/p.
- **[their approach]** combine two types of graph data, molecular + KG based info.
- Previous approaches vs their method.
- Graph as a Node (Gode).

Contributions –

- New Method,
- Robust Embeddings,
- New KG,
- SOTA performance.

Related work -

- GNNs for Molecular Representation Learning,
- Biomedical KGs [PubChemRDF, PrimeKG],
- Molecular Property Prediction without KGs,
- Contrastive Learning,
- Fusing KGs and Molecules.

Gode –

Molecule Graph,

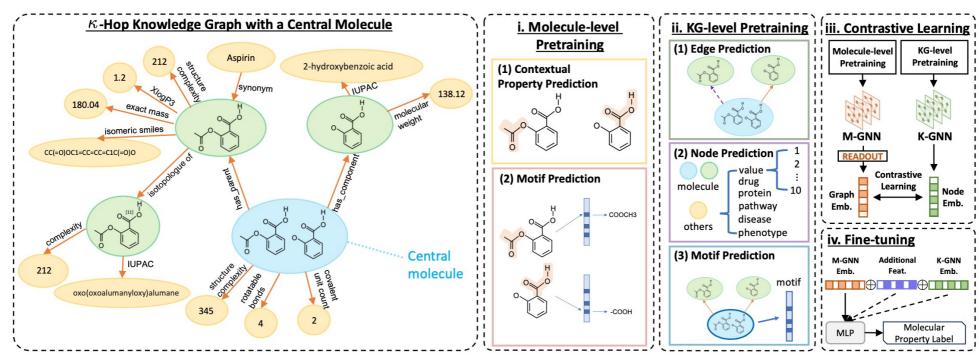
$$G_m = (\mathcal{V}_m, \mathcal{E}_m)$$

Knowledge Graph,

$$\mathcal{T} = \{\langle h, r, t \rangle_i\}_i^n$$

• M-GNN, $f:\mathcal{M} o\mathbb{R}^d$ which embeds molecules.

• K-GNN, $g:\mathcal{K} \to \mathbb{R}^d$ which embeds the central molecule in a KG to an embedding.



Graph and Geometric Learning Lab, week 7

- Molecule level Pre-training
 - 1. Node-level contextual property prediction [multi-class classification],
 - 2. Graph-level motif prediction [multi-label binary classification].

$$\mathcal{L}_{M} = \sum_{v}^{V'_{m}} \log P(p_{v}|\mathbf{h}_{v}) + \sum_{j=1}^{n} y_{j} \log P(M_{j}|\mathbf{h}_{MG}) + (1 - y_{j}) \log(1 - P(M_{j}|\mathbf{h}_{MG})), \quad (1)$$

where V'_m is a set of randomly selected nodes; p_v is the contextual property label for the node v; n is the number of all possible motifs; M_j is the presence of j-th motif.

KG level Pre-training

- 1. Embedding initialization (e.g. TransE),
- Sub-Graph Extraction,

$$\mathcal{N}_k(v,h) = \{v\} \cup \bigcup_{u \in \mathcal{N}_k(v,h-1)} \{u\} \cup \bigcup_{u \in \mathcal{M}} \{w : (u,w) \in \mathcal{E}_k\}$$

- 3. Edge Prediction [multi-class classification] predict correct edge-type,
- 4. Node Prediction [multi-class classification] predict type of a node in the sub-graph,
- 5. Node-level motif-prediction [multi-label classification] predict motif of central node.

KG level Pre-training

$$\mathcal{L}_{K} = -\left[\lambda_{\text{edge}} \underbrace{\sum_{(u,v)}^{\mathcal{E}_{\text{sub}(m,\kappa)}} \log P((u,v)' | \mathbf{h}_{u} \oplus \mathbf{h}_{v})}_{\text{edge prediction}} + \lambda_{\text{mot}} \underbrace{\sum_{(u,v)}^{\mathcal{E}_{\text{sub}(m,\kappa)}} [\log P(v' | \mathbf{h}_{v})]}_{\text{node prediction}} + \lambda_{\text{mot}} \underbrace{\sum_{j=1}^{n} [y_{j} \log P(M_{j} | \mathbf{h}_{c}) + (1 - y_{j}) \log (1 - P(M_{j} | \mathbf{h}_{c}))]}_{\text{motif prediction}},$$
(3)

where the first term (u,v)' is the label of edge between the nodes u and v. v' is the label of node v, \oplus denotes the embedding concatenation. y_j is binary indicator, $\log P(M_j|\mathbf{h}_c)$ is the predicted probability of central molecule c has the j-th functional group motif M_j given its embedding \mathbf{h}_c . λ_{edge} , λ_{mot} , and λ_{mol} are hyperparameters balancing the importance of different tasks.

Contrastive learning

$$\mathcal{L}_{\text{InfoNCE}} = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\sin(f(m_i), g(s_i))) + (1 - y_i) \log(1 - \sin(f(m_i), g(s_i))) \right]$$
$$\sin(f(m_i), g(s_i))) = \frac{\exp(\tau^{-1} \mathbf{h}_{\text{MG}(i)}^{\text{T}} \mathbf{h}_{\text{KG}(i)})}{\exp(\tau^{-1} \mathbf{h}_{\text{MG}(i)}^{\text{T}} \mathbf{h}_{\text{KG}(i)}) + 1}$$

Fine-tuning for downstream tasks

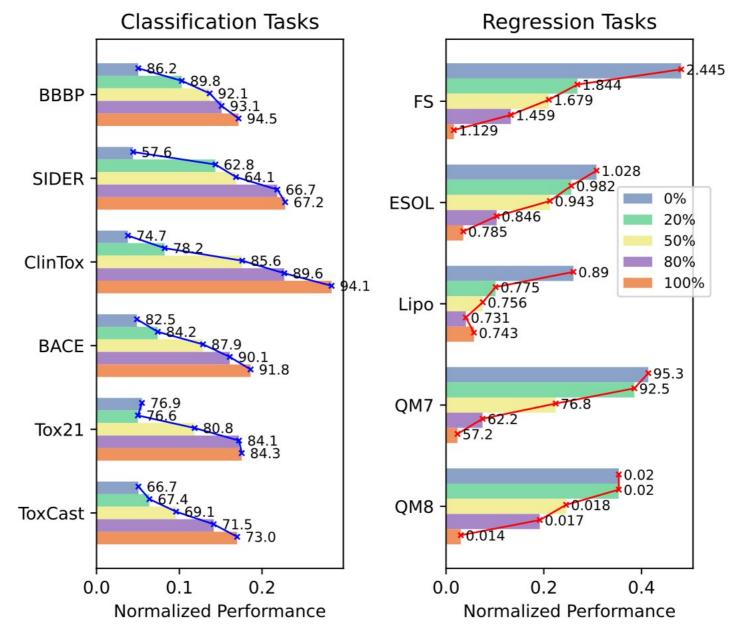
$$\mathbf{h}_{\mathrm{joint}} = \mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{f}} \oplus \mathbf{h}_{\mathrm{KG}}$$

Dataset # Molecules # Tasks	BBBP 2039	SIDER 1427 27	ClinTox 1478 2	BACE 1513	Tox21 7831 12	ToxCast 8575 617
GCN (Kipf & Welling, 2016)	71.8 ± 0.9	53.6 ± 0.3	62.5 ± 2.8	71.6 ± 2.0	70.9 ± 0.3	65.0 ± 6.1
GIN (Xu et al., 2018)	65.8 ± 4.5	57.3 ± 1.6	58.0 ± 4.4	70.1 ± 5.4	74.0 ± 0.8	66.7 ± 1.5
Weave (Kearnes et al., 2016)	83.7 ± 6.5	54.3 ± 3.4	82.3 ± 2.3	79.1 ± 0.8	74.1 ± 4.4	67.8 ± 2.4
SchNet (Schütt et al., 2017)	84.8 ± 2.2	54.5 ± 3.8	71.7 ± 4.2	76.6 ± 1.1	76.6 ± 2.5	67.9 ± 2.1
MPNN (Gilmer et al., 2017)	91.3 ± 4.1	59.5 ± 3.0	87.9 ± 5.4	81.5 ± 4.4	80.8 ± 2.4	$\textbf{69.1} \pm \textbf{1.3}$
DMPNN (Yang et al., 2019)	$\textbf{91.9} \pm \textbf{3.0}$	63.2 ± 2.3	89.7 ± 4.0	85.2 ± 5.3	$\textbf{82.6} \pm \textbf{2.3}$	$\textbf{71.8} \pm \textbf{1.1}$
MGCN (Lu et al., 2019)	85.0 ± 6.4	55.2 ± 1.8	63.4 ± 4.2	73.4 ± 3.0	70.7 ± 1.6	66.3 ± 0.9
MGSSL (Zhang et al., 2021)	70.5 ± 1.1	$\textbf{64.1} \pm \textbf{0.7}$	80.7 ± 2.1	79.7 ± 0.8	76.4 ± 0.4	64.1 ± 0.7
N-GRAM (Liu et al., 2019)	91.2 ± 1.3	63.2 ± 0.5	85.5 ± 3.7	$\textbf{87.6} \pm \textbf{3.5}$	76.9 ± 2.7	-
HU. et.al (Hu et al., 2019)	70.8 ± 1.5	62.7 ± 0.8	72.6 ± 1.5	84.5 ± 0.7	78.7 ± 0.4	65.7 ± 0.6
GROVER _{Large} (Rong et al., 2020) (our M-GNN)	86.2 ± 3.9	57.6 ± 1.6	74.7 ± 4.4	82.5 ± 4.4	76.9 ± 2.3	66.7 ± 2.6
MolCLR (Wang et al., 2021b)	73.3 ± 1.0	61.2 ± 3.6	$\textbf{89.8} \pm \textbf{2.7}$	82.8 ± 0.7	74.1 ± 5.3	65.9 ± 2.1
KANO (Fang et al., 2023)	$\textbf{93.7} \pm \textbf{2.3}$	$\textbf{63.8} \pm \textbf{1.2}$	$\textbf{93.6} \pm \textbf{0.7}$	$\textbf{90.4} \pm \textbf{1.5}$	$\textbf{81.2} \pm \textbf{1.8}$	$\textbf{72.5} \pm \textbf{1.5}$
Gode (ours)	$\textbf{94.5} \pm \textbf{1.9}$	$\textbf{67.2} \pm \textbf{1.4}$	$\textbf{94.1} \pm \textbf{2.9}$	$\textbf{91.8} \pm \textbf{2.2}$	$\textbf{84.3} \pm \textbf{1.2}$	$\textbf{73.0} \pm \textbf{0.9}$

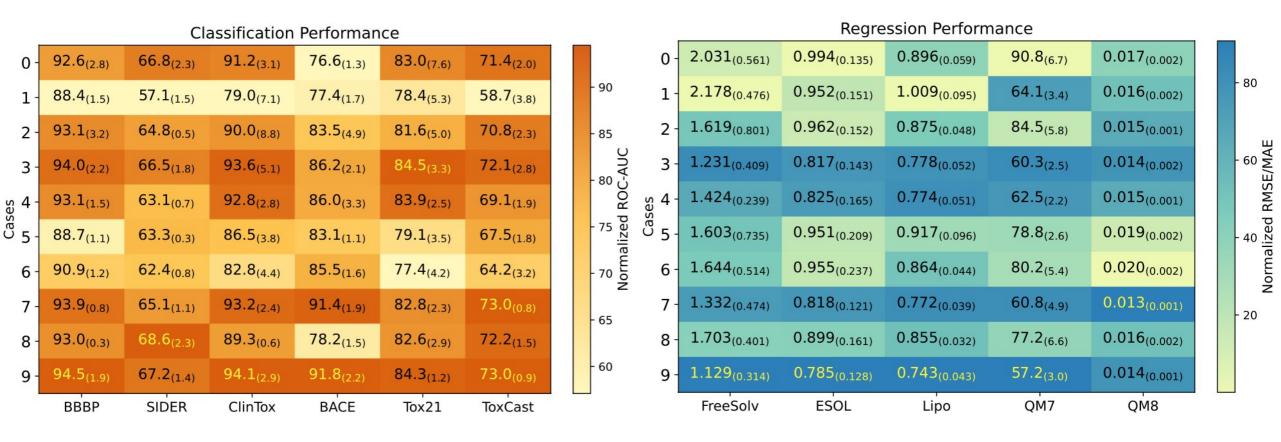
Datasets # Molecules	FreeSolv 642	ESOL 1128	Lipophilicity 4200	QM7 6830	QM8 21786
# Tasks	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	12
GCN (Kipf & Welling, 2016)	2.870 ± 0.140	1.430 ± 0.050	0.712 ± 0.049	122.9 ± 2.2	0.037 ± 0.001
GIN (Xu et al., 2018)	2.765 ± 0.180	1.452 ± 0.020	0.850 ± 0.071	124.8 ± 0.7	0.037 ± 0.001
Weave (Kearnes et al., 2016)	2.398 ± 0.250	1.158 ± 0.055	0.813 ± 0.042	94.7 ± 2.7	0.022 ± 0.001
SchNet (Schütt et al., 2017)	3.215 ± 0.755	1.045 ± 0.064	0.909 ± 0.098	$\textbf{74.2} \pm \textbf{6.0}$	0.020 ± 0.002
MPNN (Gilmer et al., 2017)	$\textbf{1.621} \pm \textbf{0.952}$	1.167 ± 0.430	$\textbf{0.672} \pm \textbf{0.051}$	111.4 ± 0.9	$\textbf{0.015} \pm \textbf{0.001}$
DMPNN (Yang et al., 2019)	1.673 ± 0.082	1.050 ± 0.008	$\textbf{0.683} \pm \textbf{0.016}$	103.5 ± 8.6	$\textbf{0.016} \pm \textbf{0.001}$
MGCN (Lu et al., 2019)	3.349 ± 0.097	1.266 ± 0.147	1.113 ± 0.041	77.6 ± 4.7	0.022 ± 0.002
N-GRAM (Liu et al., 2019)	2.512 ± 0.190	1.100 ± 0.160	0.876 ± 0.033	125.6 ± 1.5	0.032 ± 0.003
HU. et.al (Hu et al., 2019)	2.764 ± 0.002	1.100 ± 0.006	0.739 ± 0.003	113.2 ± 0.6	0.022 ± 0.001
GROVER (Rong et al., 2020) (our M-GNN)	2.445 ± 0.761	$\textbf{1.028} \pm \textbf{0.145}$	0.890 ± 0.050	95.3 ± 5.6	0.020 ± 0.003
MolCLR (Wang et al., 2021b)	2.301 ± 0.247	1.113 ± 0.023	0.789 ± 0.009	90.0 ± 1.7	0.019 ± 0.013
KANO (Fang et al., 2023)	$\textbf{1.443} \pm \textbf{0.315}$	$\textbf{0.914} \pm \textbf{0.092}$	$\textbf{0.651} \pm \textbf{0.018}$	$\textbf{63.6} \pm \textbf{4.1}$	$\textbf{0.014} \pm \textbf{0.002}$
GODE (ours)	$\textbf{1.129} \pm \textbf{0.314}$	$\textbf{0.785} \pm \textbf{0.128}$	0.743 ± 0.043	$\textbf{57.2} \pm \textbf{3.0}$	$\textbf{0.014} \pm \textbf{0.001}$

Variants for Ablation Study						
Case	KGE	κ -hop	Pret.	Cont.	Embedding	
0	✓	X	X	X	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{KGE}}$	
1	X	$\kappa = 2$	\checkmark	✓	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{KG}}$	
2	\checkmark	$\kappa = 2$	✓	X	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{KG}}$	
3	\checkmark	$\kappa = 2$	✓	✓	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{KG}}$	
4	\checkmark	$\kappa = 2$	✓	✓	\mathbf{h}_{MG}	
(5)	\checkmark	$\kappa = 3$	✓	✓	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{KG}}$	
6	\checkmark	$\kappa = 3$	✓	✓	\mathbf{h}_{MG}	
7	✓	$\kappa = 2$	✓	✓	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{f}}$	
8	✓	X	X	X	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{f}} \oplus \mathbf{h}_{\mathrm{KGE}}$	
9	✓	$\kappa = 2$	✓	✓	$\mathbf{h}_{\mathrm{MG}} \oplus \mathbf{h}_{\mathrm{f}} \oplus \mathbf{h}_{\mathrm{KG}}$	

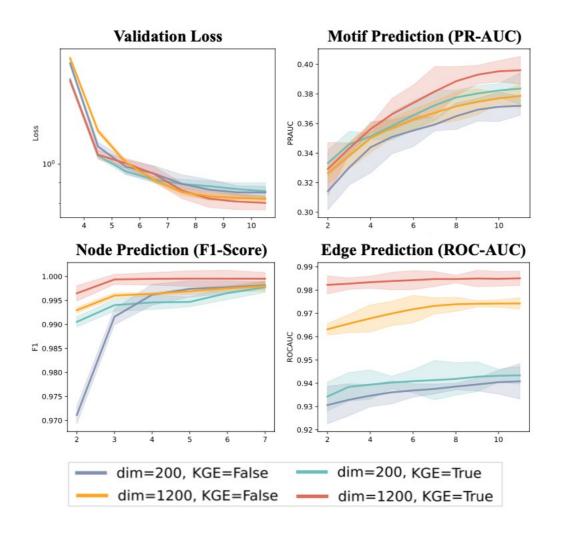
• Size of KG.

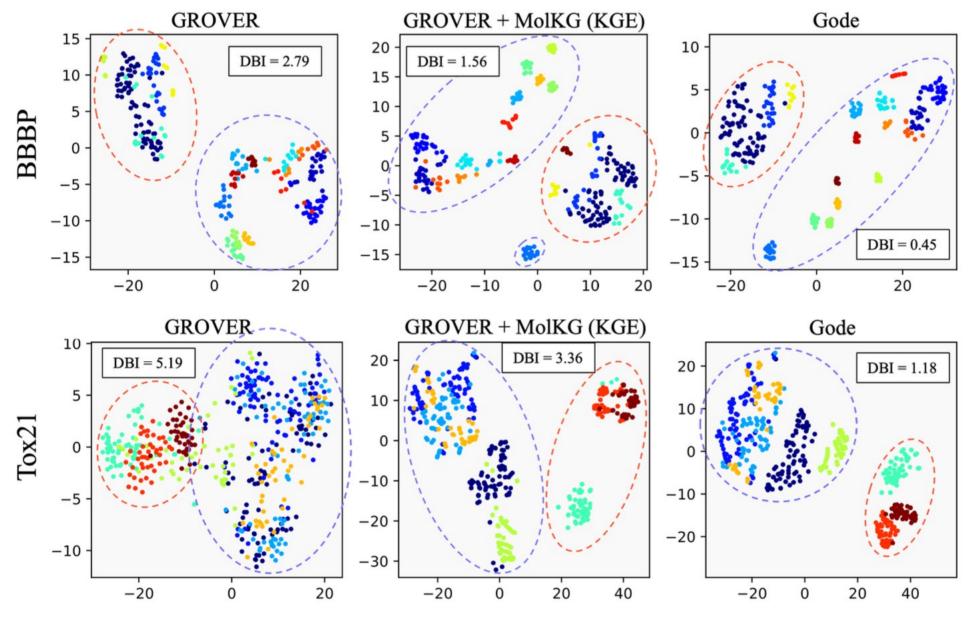


Graph and Geometric Learning Lab, week 7



KGE importance.





Graph and Geometric Learning Lab, week 7

Rank-N-Contrast: Learning Continuous Representations for Regression

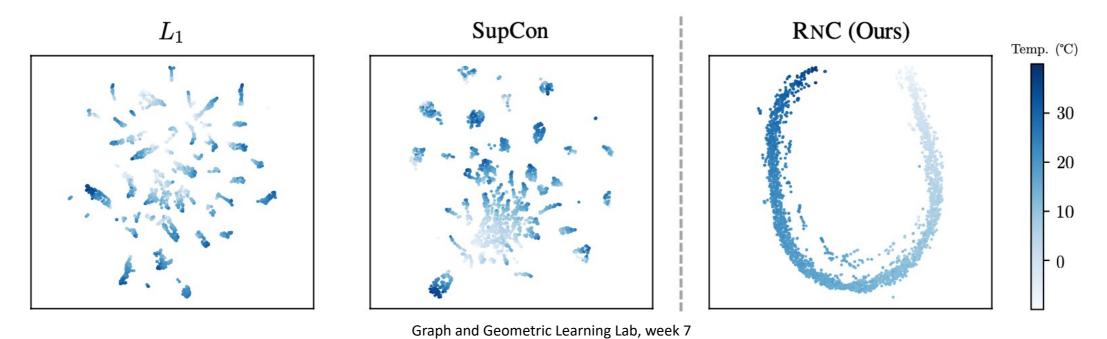
Kaiwen Zha^{1,*} Peng Cao^{1,*} Jeany Son² Yuzhe Yang¹ Dina Katabi¹

¹MIT CSAIL ²GIST

NeurIPS 2023 Spotlight

Introduction –

- Current methods for regression tasks, L1/L2.
- "However, previous methods focus on imposing constraints on the final predictions in an end-to-end fashion, but do not explicitly emphasize the representations learned by the model. Unfortunately, these representations are often fragmented and incapable of capturing the continuous relationships that underlie regression tasks."



Contributions –

- Identify problems with current methods,
- Propose a new method RnC,
- Extensive experiments that show SOTA performance.

Related work –

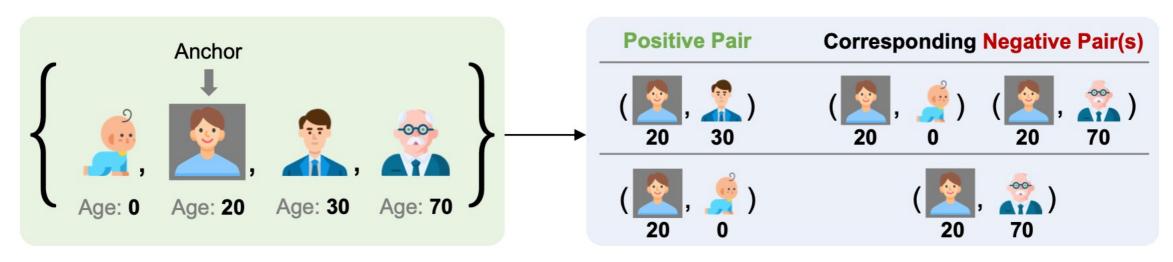
- Normal regression losses like L1, L2, Huber and even binning.
- Representation Learning and SupCon.

Rank-N-Contrast –

Augment dataset. Can work without augmenting as well.

$$ilde{oldsymbol{x}}_{2n} = t(oldsymbol{x}_n)$$
 and $ilde{oldsymbol{x}}_{2n-1} = t'(oldsymbol{x}_n)$

2. Create – and + pairs!



(a) A Batch of Samples

(b) Pair Construction for RNC

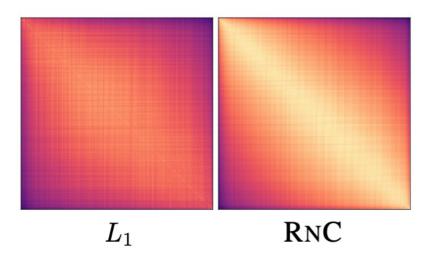
$$S_{i,j} := \{ \boldsymbol{v}_k \mid k \neq i, d(\tilde{\boldsymbol{y}}_i, \tilde{\boldsymbol{y}}_k) \geq d(\tilde{\boldsymbol{y}}_i, \tilde{\boldsymbol{y}}_j) \}$$

Rank-N-Contrast –

3. Loss function, basically, given an anchor, contrast each example with it's negatives to **impose an ordering.**

$$l_{\text{RNC}}^{(i)} = \frac{1}{2N - 1} \sum_{j=1, j \neq i}^{2N} -\log \frac{\exp(\sin(\boldsymbol{v}_i, \boldsymbol{v}_j) / \tau)}{\sum_{\boldsymbol{v}_k \in \mathcal{S}_{i,j}} \exp(\sin(\boldsymbol{v}_i, \boldsymbol{v}_k) / \tau)}$$

4. Feature Ordinality (data points sorted by ground truth) & Correlation.



	Spearman's $ ho^{\uparrow}$	Kendall's $ au^{\uparrow}$
$\overline{L_1}$	0.822	0.664
RNC	0.971	0.870

Theoretical Analysis –

 They have proved that their loss is tightly-lower-bounded by the optimal ordering loss.

Theorem 1 (Lower bound of \mathcal{L}_{RNC}). L^* is a lower bound of \mathcal{L}_{RNC} , i.e., $\mathcal{L}_{RNC} > L^*$.

Theorem 2 (Lower bound tightness). For any $\epsilon > 0$, there exists a set of feature embeddings such that $\mathcal{L}_{RNC} < L^* + \epsilon$.

Theorem 3 (Main theorem). For any $0 < \delta < 1$, there exist $\epsilon > 0$, such that if $\mathcal{L}_{RNC} < L^* + \epsilon$, then the feature embeddings are δ -ordered.

• Also show that a δ -ordered feature embedding leads to better generalization! So better performance!

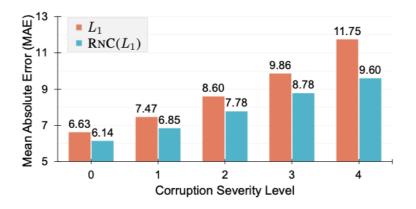
Are based on Vision datasets.

	Aį	geDB	Т	UAB	MPIIF	aceGaze	Skyl	Finder
Metrics	MAE^\downarrow	$R^{2^{\uparrow}}$	MAE^{\downarrow}	$R^{2^{\uparrow}}$	Angular $^{\downarrow}$	$R^{2^{\uparrow}}$	MAE^{\downarrow}	$R^{2\uparrow}$
L_1 $\mathbf{R}\mathbf{N}\mathbf{C}(L_1)$	6.63	0.828	7.46	0.655	5.97	0.744	2.95	0.860
	6.14 (+0.49)	0.850 (+0.022)	6.97 (+0.49)	0.697 (+0.042)	5.27 (+0.70)	0.815 (+0.071)	2.86 (+0.09)	0.869 (+0.009)
MSE	6.57	0.828	8.06	0.585	6.02	0.747	3.08	0.851
RNC(MSE)	6.19 (+0.38)	0.849 (+0.021)	7.05 (+1.01)	0.692 (+0.107)	5.35 (+0.67)	0.802 (+0.055)	2.86 (+0.22)	0.869 (+0.018)
HUBER RNC(HUBER)	6.54	0.828	7.59	0.637	6.34	0.709	2.92	0.860
	6.15 (+0.39)	0.850 (+0.022)	6.99 (+0.60)	0.696 (+0.059)	5.15 (+1.19)	0.830 (+0.121)	2.86 (+0.06)	0.869 (+0.009)
DEX [36]	7.29	0.787	8.01	0.537	5.72	0.776	3.58	0.778
RNC(DEX)	6.43 (+0.86)	0.836 (+0.049)	7.23 (+0.78)	0.646 (+0.109)	5.14 (+0.58)	0.805 (+0.029)	2.88 (+0.70)	0.865 (+0.087)
DLDL-v2 [14]	6.60	0.827	7.91	0.560	5.47	0.799	2.99	0.856
RNC(DLDL-v2)	6.32 (+0.28)	0.844 (+0.017)	6.91 (+1.00)	0.697 (+0.137)	5.16 (+0.31)	0.802 (+0.003)	2.85 (+0.14)	0.869 (+0.013)
OR [33]	6.40	0.830	7.36	0.646	5.86	0.770	2.92	0.861
RNC(OR)	6.34 (+0.06)	0.843 (+0.013)	7.01 (+0.35)	0.688 (+0.042)	5.13 (+0.73)	0.825 (+0.055)	2.86 (+0.06)	0.867 (+0.006)
CORN [40]	6.72	0.811	8.11	0.597	5.88	0.762	3.24	0.819
RNC(CORN)	6.44 (+0.28)	0.838 (+0.027)	7.22 (+0.89)	0.663 (+0.066)	5.18 (+0.70)	0.820 (+0.058)	2.89 (+0.35)	0.862 (+0.043)

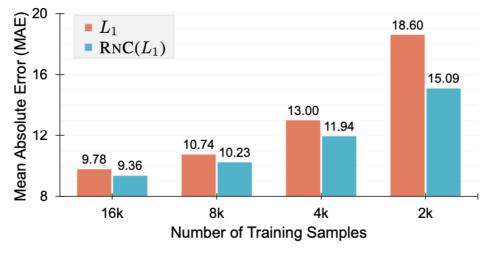
Comparison to SOTA.

Method	AgeDB	TUAB	MPIIFaceGaze	SkyFinder		
Representation learning methods (Linear Probing):						
SIMCLR [4]	9.59	11.01	9.43	4.70		
DINO [3]	10.26	11.62	11.92	5.63		
SupCon [25]	8.13	8.47	9.27	3.97		
Representation learning metho	ods (Fine-tunii	ng):				
SIMCLR [4]	6.57	7.57	5.50	2.93		
DINO [3]	6.61	7.58	5.80	2.98		
SUPCON [25]	6.55	7.41	5.54	2.95		
Regression learning methods:						
L_1	6.63	7.46	5.97	2.95		
LDS+FDS [44]	6.45	_	_	_		
L2CS-NET [1]	_	_	5.45	_		
LDE [7]	_	_	_	2.92		
RANKSIM [17]	6.51	7.33	5.70	2.94		
ORDINAL ENTROPY [50]	6.47	7.28	_	2.94		
$\mathbf{R}\mathbf{N}\mathbf{C}(L_1)$	6.14	6.97	5.27	2.86		
GAINS	+0.31	+0.31	+0.18	+0.06		

Robustness to data corruption.



Resilience to reduced dataset size.

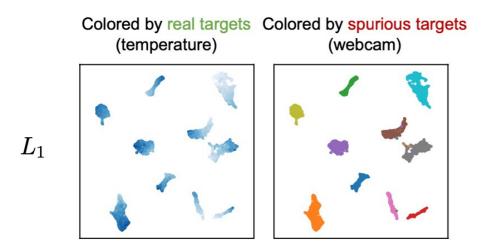


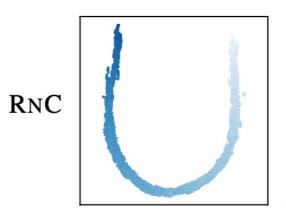
Graph and Geometric Learning Lab, week 7

Transfer Learning.

	$\texttt{AgeDB} \rightarrow \texttt{IMDB-WIKI} \ (subsampled, 2k)$			$\texttt{AgeDB} \rightarrow \texttt{IMDB-WIKI} \ (subsampled, 2k) \\ \qquad \qquad \texttt{IMDB-}$				B-WIKI (subsam	pled, 32k) \rightarrow	AgeDB
	Linear	Probing	Fine-	tuning	Linear	Probing	Fine	-tuning		
Metrics	MAE^{\downarrow}	$R^{2^{\uparrow}}$	MAE^{\downarrow}	$R^{2^{\uparrow}}$	MAE↓	$R^{2^{\uparrow}}$	MAE↓	$R^{2^{\uparrow}}$		
L_1 $\mathbf{RNC}(L_1)$	12.25 11.12 (+1.13)	0.496 0.556 (+ 0.060)	11.57 11.09 (+ 0.48)	0.528 0.546 (+ 0.018)	7.36 7.06 (+ 0.30)	0.801 0.812 (+0.011)	6.36 6.13 (+ 0.23)	0.848 0.850 (+0.002)		

Robustness to spurious targets.





Zero-shot generalization.

Label Distribution	Method	All	Seen	Unseen
	L_1 $\mathbf{R}\mathbf{N}\mathbf{C}(L_1)$	12.53 11.69 (+0.84)	10.82 10.46 (+0.36)	18.40 15.92 (+2.48)
	$egin{aligned} L_1 \ \mathbf{R}\mathbf{N}\mathbf{C}(L_1) \end{aligned}$	11.94 10.88 (+1.06)	10.43 9.78 (+0.64)	14.98 13.08 (+1.90)

Ablation Study –

Number of positives.

(a) Number of Positives K

	MAE^{\downarrow}	$R^{2\uparrow}$
128	6.46	0.828
256	6.43	0.833
384	6.29	0.845
511	6.14	0.850

Graph and Geometric Learning Lab, week 7

Sim(., .) function effect.

	MAE↓	R^{2+}
cosine	6.51	0.836
negative L_1 norm	6.25	0.842
negative L_2 norm	6.14	0.850

Effect of training scheme.

	MAE↓	$R^{2^{\uparrow}}$
linear probing	6.14	0.850
fine-tuning	6.36	0.844
regularization	6.42	0.833

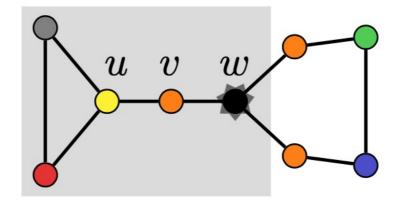
COOPERATIVE GRAPH NEURAL NETWORKS

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, İsmail İlkan Ceylan Department of Computer Science
University of Oxford
{name.surname}@cs.ox.ac.uk

(maybe) ICLR 2024 under review

Introduction –

- Problems with usual GNNs,
- Generalized MPNNs,



Each node as a player with 4 possible actions,

STANDARD (S): Broadcast to neighbors that listen and listen to neighbors that broadcast.

LISTEN (L): Listen to neighbors that broadcast.

BROADCAST (B): Broadcast to neighbors that listen.

ISOLATE (I): Neither listen nor broadcast, effectively isolating the node.

Contributions –

- Novel problem formulation with an environment network η and an action network π which allows a learnable topology.
- Given approach is more expressive than the 1D WL algorithm and bettersuited for longer-range tasks.
- SOTA performance.

Background –

• Graph Neural Networks, generalized $-\mathbf{h}_v^{(\ell+1)} = \phi^{(\ell)}\left(\mathbf{h}_v^{(\ell)}, \psi^{(\ell)}\left(\mathbf{h}_v^{(\ell)}, \{\!\{\mathbf{h}_u^{(\ell)} \mid u \in \mathcal{N}_v\}\!\}\right)\right)$ their focus $-\mathbf{h}_v^{(\ell+1)} = \sigma\left(\mathbf{W}_s^{(\ell)}\mathbf{h}_v^{(\ell)} + \mathbf{W}_n^{(\ell)}\psi\left(\{\!\{\mathbf{h}_u^{(\ell)} \mid u \in \mathcal{N}_v\}\!\}\right)\right)$ and prominent ones like GIN, GCN, etc.

Background -

Straight-through Gumbel Softmax!

Gumbel-softmax
$$(\boldsymbol{p}; \tau) = \frac{\exp\left((\log(\boldsymbol{p}) + \boldsymbol{g})/\tau\right)}{\sum_{a \in \Omega} \exp\left((\log(\boldsymbol{p}(a)) + \boldsymbol{g}(a))/\tau\right)}$$

Related Work –

- Standard GNNs and problems (e.g. limited by 1-WL test),
- Recent transformer-GNN surge,
- Synchronous message passing,
- Orthogonal work on picking optimal depth for each node using RL.

Co-GNNs -

- Basic idea every node as a player in an multiplayer environment,
- 2-stage update process,

$$\begin{split} & \mathsf{first-} \ \, \boldsymbol{p}_v^{(\ell)} = \pi \left(\boldsymbol{h}_v^{(\ell)}, \{\!\!\{ \boldsymbol{h}_u^{(\ell)} \mid u \in \mathcal{N}_v \}\!\!\} \right) \\ & \mathsf{second-} \ \, \boldsymbol{h}_v^{(\ell+1)} = \begin{cases} \eta^{(\ell)} \big(\boldsymbol{h}_v^{(\ell)}, \{\!\!\{ \}\!\!\} \big), & a_v^{(\ell)} = \mathrm{I} \vee \mathrm{B} \\ \eta^{(\ell)} \big(\boldsymbol{h}_v^{(\ell)}, \{\!\!\{ \boldsymbol{h}_u^{(\ell)} \mid u \in \mathcal{N}_v, a_u^{(\ell)} = \mathrm{S} \vee \mathrm{B} \}\!\!\} \big), & a_v^{(\ell)} = \mathrm{L} \vee \mathrm{S} \end{cases} \end{split}$$

- If Isolate (I) or Broadcast (B) is chosen, a node is updated only using it's state;
 else (when Listen (L) or Standard(S)) is chosen, a node is updated using a normal GNN.
- π and η can be **any** GNN!

Model Properties –

- Task-specific learnable computation graph.
- 2. Can re-structure edges on different levels, leading to different graphs at each level! $\boldsymbol{h}_v^{(\ell+1)} = \eta^{(\ell)} \left(\boldsymbol{h}_v^{(\ell)}, \{\!\!\{ \boldsymbol{h}_u^{(\ell)} \mid (u,v) \in E^{(\ell)} \}\!\!\} \right)$
- Dynamic computation graph across layers.
- 4. Feature + Structure based!
- 5. Asynchronous.
- 6. Efficient. O(GCN)!

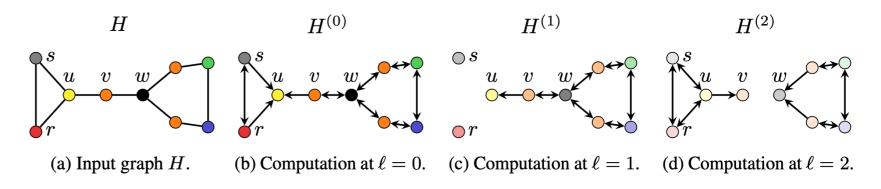


Figure 3: The input graph H and its computation graphs $H^{(0)}$, $H^{(1)}$, $H^{(2)}$ at the respective layers. The computation graphs are a result of applying the following actions: $\langle L, L, S \rangle$ for the node u; $\langle S, S, L \rangle$ for the nodes v and w; $\langle S, I, S \rangle$ for the nodes s and s and s and s are a result of applying the following actions: $\langle L, L, S \rangle$ for the nodes s and s are a result of applying the following actions: $\langle L, L, S \rangle$ for the nodes s and s are a result of applying the following actions: $\langle L, L, S \rangle$ for the nodes s and s are a result of applying the following actions: $\langle L, L, S \rangle$ for the nodes s and s are a result of applying the following actions: $\langle L, L, S \rangle$ for all other nodes.

Propositions –

• > 1-WL test.

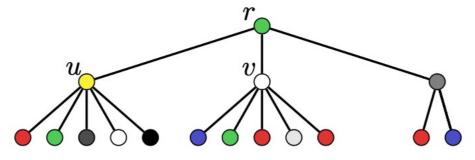
Proposition 5.1. Let $G_1 = (V_1, E_1, X_1)$ and $G_2 = (V_2, E_2, X_2)$ be two non-isomorphic graphs. Then, for any threshold $0 < \delta < 1$, there exists a parametrization of a CO-GNN architecture using sufficiently many layers L, satisfying $\mathbb{P}(\mathbf{z}_{G_1}^{(L)} \neq \mathbf{z}_{G_2}^{(L)}) \geq 1 - \delta$.

Dynamic long-range message passing.

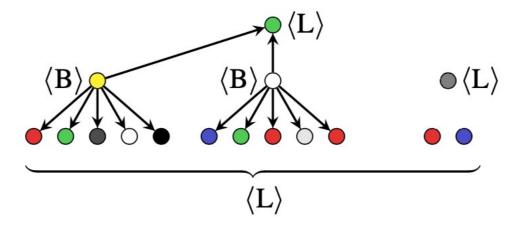
Theorem 5.2. Let $G = (V, E, \mathbf{X})$ be a connected graph with node features. For some k > 0, for any target node $v \in V$, for any k source nodes $u_1, \ldots, u_k \in V$, and for any compact, differentiable function $f : \mathbb{R}^{d^{(0)}} \times \ldots \times \mathbb{R}^{d^{(0)}} \to \mathbb{R}^d$, there exists an L-layer CO-GNN computing final node representations such that for any $\epsilon, \delta > 0$ it holds that $\mathbb{P}(|\mathbf{h}_v^{(L)} - f(\mathbf{x}_{u_1}, \ldots, \mathbf{x}_{u_k})| < \epsilon) \geq 1 - \delta$.

Prevents both over-squashing and over-smoothening!

• Synthetic experiment, new task RootNeighbors, "given a rooted tree, predict the average of the features of root-neighbors of degree 6".



(a) Example tree for ROOTNEIGHBORS.



•	Model	MAE
	Random	0.474
	GCN	0.468
	SAGE	0.336
	GAT	0.442
	SUMGNN	0.370
	MEANGNN	0.329
	$\overline{Co\text{-}GNN(\Sigma,\Sigma)}$	0.196
	$Co-GNN(\mu,\mu)$	0.339
	$\operatorname{Co\text{-}GNN}(\Sigma,\mu)$	0.079

- 1. The action network chooses either the action LISTEN or STAN-DARD for the root node, and the action BROADCAST or STAN-DARD for the root-neighbors which have a degree 6,
- 2. The action network chooses either the action LISTEN or the action ISOLATE for all the remaining root-neighbors, and
- 3. The environment network updates the root node by averaging the features of its neighbors which are currently broadcasting.

 Why is MeanGNN better? Applies a different non-linearity on the source node!

Node Classification (all are heterophilic datasets).

	roman-empire	amazon-ratings	minesweeper	tolokers	questions
GCN	73.69 ± 0.74	48.70 ± 0.63	89.75 ± 0.52	83.64 ± 0.67	76.09 ± 1.27
SAGE	85.74 ± 0.67	53.63 ± 0.39	93.51 ± 0.57	82.43 ± 0.44	76.44 ± 0.62
GAT	80.87 ± 0.30	49.09 ± 0.63	92.01 ± 0.68	83.70 ± 0.47	77.43 ± 1.20
GAT-sep	88.75 ± 0.41	52.70 ± 0.62	93.91 ± 0.35	83.78 ± 0.43	76.79 ± 0.71
GT	86.51 ± 0.73	51.17 ± 0.66	91.85 ± 0.76	83.23 ± 0.64	77.95 ± 0.68
GT-sep	87.32 ± 0.39	52.18 ± 0.80	92.29 ± 0.47	82.52 ± 0.92	78.05 ± 0.93
Co - $GNN(\Sigma, \Sigma)$	91.57 ± 0.32	51.28 ± 0.56	95.09 ± 1.18	83.36 ± 0.89	80.02 ± 0.86
$Co\text{-}GNN(\mu,\mu)$	91.37 ± 0.35	54.17 ± 0.37	97.31 ± 0.41	84.45 ± 1.17	76.54 ± 0.95

Graph Classification.

	IMDB-B	IMDB-M	REDDIT-B	NCI1	PROTEINS	ENZYMES
DGCNN	69.2 ± 3.0	45.6 ± 3.4	87.8 ± 2.5	76.4 ± 1.7	72.9 ± 3.5	38.9 ± 5.7
DiffPool	68.4 ± 3.3	45.6 ± 3.4	89.1 ± 1.6	76.9 ± 1.9	73.7 ± 3.5	59.5 ± 5.6
ECC	67.7 ± 2.8	43.5 ± 3.1	OOR	76.2 ± 1.4	72.3 ± 3.4	29.5 ± 8.2
GIN	71.2 ± 3.9	48.5 ± 3.3	89.9 ± 1.9	80.0 ± 1.4	73.3 ± 4.0	59.6 ± 4.5
GraphSAGE	68.8 ± 4.5	47.6 ± 3.5	84.3 ± 1.9	76.0 ± 1.8	73.0 ± 4.5	58.2 ± 6.0
$\overline{\operatorname{ICGMM}}_f$	71.8 ± 4.4	49.0 ± 3.8	91.6 ± 2.1	76.4 ± 1.4	73.2 ± 3.9	-
SPN(k=5)	-	-	-	78.6 ± 1.7	74.2 ± 2.7	69.4 ± 6.2
$Co\text{-}GNN(\Sigma,\Sigma)$	70.8 ± 3.3	48.5 ± 4.0	88.6 ± 2.2	80.6 ± 1.1	73.1 ± 2.3	65.7 ± 4.9
$Co-GNN(\mu,\mu)$	72.2 ± 4.1	$\textcolor{red}{\textbf{49.9}} \pm 4.5$	90.4 ± 1.9	79.4 ± 0.7	71.3 ± 2.0	68.3 ± 5.7

Idea –

- 1. One layer of Molecular aggregation, one layer of KG stuff.
- 2. Molecular aggregation => Spec/Graphormer(Mol. Graph + [VNode])
- 3. KG stuff => use [VNode] as mol embedding and use HyNT.
- 4. Pre train using final embedding as in Gode.
- 5. Possible alterations all layers of Mol then all layers of KG.
- 6. Make [VNode] big and share across all molecules.

Novelty –

 Joint optimization and free interaction of both modalities like this has not been explored.

Problems –

- 1. No GNNs?
- 2. Can use Co-GNNs in some way to allow which edges should be present?
- 3. Are molecule graphs heterogeneous? Then cannot use Specformer as is.