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ICLR 2024 under review
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Introduction –

• GNNs for representation learning + molecular graph as i/p.
• [their approach] combine two types of graph data, molecular + KG based 

info.
• Previous approaches vs their method.
• Graph as a Node (Gode).

Contributions –

• New Method,
• Robust Embeddings,
• New KG,
• SOTA performance.
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Related work –

• GNNs for Molecular Representation Learning,
• Biomedical KGs [PubChemRDF, PrimeKG],
• Molecular Property Prediction without KGs,
• Contrastive Learning,
• Fusing KGs and Molecules.

Gode –

• Molecule Graph,

• Knowledge Graph,  
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Gode –

• M-GNN,
which embeds molecules.

• K-GNN,
which embeds the central molecule in a KG to an embedding.
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Gode –

• Molecule level Pre-training

1. Node-level contextual property prediction [multi-class classification],
2. Graph-level motif prediction [multi-label binary classification].
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Gode –

• KG level Pre-training

1. Embedding initialization (e.g. TransE),
2. Sub-Graph Extraction,

3. Edge Prediction [multi-class classification] predict correct edge-type,
4. Node Prediction [multi-class classification] predict type of a node in the sub-graph,
5. Node-level motif-prediction [multi-label classification] predict motif of central node.
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Gode –

• KG level Pre-training
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Gode –

• Contrastive learning

• Fine-tuning for downstream tasks
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Experiments –
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Experiments –
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Ablation Study –
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Ablation Study –

• Size of KG.
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Ablation Study –
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Ablation Study –

• KGE importance.
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Ablation Study –
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NeurIPS 2023 Spotlight
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Introduction –

• Current methods for regression tasks, L1/L2.
• “However, previous methods focus on imposing constraints on the final 

predictions in an end-to-end fashion, but do not explicitly emphasize the 
representations learned by the model. Unfortunately, these representations 
are often fragmented and incapable of capturing the continuous 
relationships that underlie regression tasks.”
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Contributions –

• Identify problems with current methods,
• Propose a new method RnC,
• Extensive experiments that show SOTA performance.

Related work –

• Normal regression losses like L1, L2, Huber and even binning.
• Representation Learning and SupCon.
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Rank-N-Contrast –

1. Augment dataset. Can work without augmenting as well.

2. Create – and + pairs!
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Rank-N-Contrast –

3. Loss function, basically, given an anchor, contrast each example with it’s 
negatives to impose an ordering.

4. Feature Ordinality (data points sorted by ground truth) & Correlation.
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Experiments –

• Are based on Vision datasets.
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Experiments –

• Comparison to SOTA.



Graph and Geometric Learning Lab, week 7

Experiments –

• Robustness to data corruption.

• Resilience to reduced dataset size.
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Experiments –

• Transfer Learning.

• Robustness to spurious targets.
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Experiments –

• Zero-shot generalization.

Ablation Study –

• Number of positives.
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Ablation Study –

• Sim(., .) function effect.

• Effect of training scheme.
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(maybe) ICLR 2024 under review
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Introduction –

• Problems with usual GNNs,
• Generalized MPNNs,

• Each node as a player with 4 possible actions,
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Background –

• Straight-through Gumbel Softmax!

Related Work –

• Standard GNNs and problems (e.g. limited by 1-WL test),
• Recent transformer-GNN surge,
• Synchronous message passing,
• Orthogonal work on picking optimal depth for each node using RL.
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Model Properties –

1. Task-specific learnable computation graph.
2. Can re-structure edges on different levels, leading to different graphs at each 

level!

3. Dynamic computation graph across layers.
4. Feature + Structure based!
5. Asynchronous.
6. Efficient. O(GCN)!
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Propositions –

• > 1-WL test.

• Dynamic long-range message passing.

• Prevents both over-squashing and over-smoothening!
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Experiments –

• Synthetic experiment, new task RootNeighbors, “given a rooted tree, predict 
the average of the features of root-neighbors of degree 6”.
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Experiments –

•  

• Why is MeanGNN better? Applies a different non-linearity on the source 
node! 
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Experiments –

• Node Classification (all are heterophilic datasets).
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Experiments –

• Graph Classification.
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Idea –

1. One layer of Molecular aggregation, one layer of KG stuff.
2. Molecular aggregation => Spec/Graphormer(Mol. Graph + [VNode])
3. KG stuff => use [VNode] as mol embedding and use HyNT.
4. Pre train using final embedding as in Gode.

5. Possible alterations – all layers of Mol then all layers of KG.
6. Make [VNode] big and share across all molecules.

Novelty –

• Joint optimization and free interaction of both modalities like this has not 
been explored.



Problems –

1. No GNNs?
2. Can use Co-GNNs in some way to allow which edges should be present?
3. Are molecule graphs heterogeneous? Then cannot use Specformer as is.
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